《图形学第二章物体的几何表示幻灯片.ppt》由会员分享,可在线阅读,更多相关《图形学第二章物体的几何表示幻灯片.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、图形学第二章物体的几何表示第1页,共49页,编辑于2022年,星期五内容l参数曲面表示l参数表示的数学原理l参数曲线l参数曲面2第2页,共49页,编辑于2022年,星期五内容l参数曲面表示l参数表示的数学原理l参数曲线l参数曲面3第3页,共49页,编辑于2022年,星期五l考虑直线段 P0(x0,y0,z0)P1(x1,y1,z1)l参数表示l分量表示l参数空间:参数表示的数学原理:直线段 4第4页,共49页,编辑于2022年,星期五参数表示的数学原理:直线段l直线段参数表示的直观几何意义l参数空间中每一个参数(点)都对应于直线段上一个点l参数空间的两个端点对应于直线段的两个端点 5第5页,共
2、49页,编辑于2022年,星期五l一般三维参数曲线形式:l参数空间中每一个t对应于曲线上一个点R(t)l图形学中,参数空间通常是有限区间,此时参数曲线称为参数曲线段 l图形学中,参数函数通常为分段多项式或有理多项式曲线 参数表示的数学原理:曲线6第6页,共49页,编辑于2022年,星期五参数表示的数学原理:平面l双线性四边面片:(u,v)0,10,1 l四边面片的四个顶点P0、P1、P2和P3对应于参数曲面的四个角点R(0,0)、R(1,0)、R(1,0)和R(0,1)7第7页,共49页,编辑于2022年,星期五曲面参数表示的数学原理双线性四边面片8第8页,共49页,编辑于2022年,星期五l
3、一般形式的空间参数曲面 l参数空间中每一点(u,v)对应于曲面上一点R(u,v)l如果曲面的参数空间是一个有限的定义域(如矩形),则对应的参数曲面称为参数曲面片l图形学中常用的参数曲面为张量积分片多项式或有理多项式参数曲面参数表示的数学原理:曲面9第9页,共49页,编辑于2022年,星期五参数表示的优势l参数表示是显式的l对每一个参数值,可以直接计算曲面上的对应点l参数表示的物体可以方便地转化为多边形逼近表示l曲面上的几何量计算简便(微分几何):法向、曲率、测地线、曲率线等l特殊形式的参数表示的外形控制十分直观lBzier、B-样条、NURBS(Non-Uniform Rational B-S
4、pline,非均匀有理B-样条)曲线/曲面。10第10页,共49页,编辑于2022年,星期五内容l参数曲面表示l参数表示的数学原理l参数曲线lBzier曲线lB-样条曲线lNURBS曲线l参数曲面11第11页,共49页,编辑于2022年,星期五Bzier曲线Pierre Bzier(1910.9.1-1999.11.25)发音:BEH zee ehBzier曲线12第12页,共49页,编辑于2022年,星期五l一条n次Bzier曲线:多项式Bi,n(t)称为Bernstein基函数:Bzier曲线定义 13第13页,共49页,编辑于2022年,星期五Bzier曲线性质l端点插值:lR(0)=R
5、0 R(1)=Rnl端点切向:lR(0)=n(R1R0)lR(1)=n(RnRn-1)l对称性:liRn-iBi,n(t)=iRiBi,n(t)l曲线的控制顶点的几何地位是对称的三次Bzier曲线14第14页,共49页,编辑于2022年,星期五Bzier曲线性质l凸包性:Bzier曲线位于控制多边形的凸包内l几何不变性:Bzier曲线的形状仅与控制多边形有关,与坐标系无关Bzier曲线的凸包性15第15页,共49页,编辑于2022年,星期五Bzier曲线剖分性质SubdivideBezierCurve(t0,R(t)for(i=0;i=n;i+)Ri(0)=Ri;for(s=1;s=n;s+)
6、for(i=0;i0、n0 l其余的权因子满足i029第29页,共49页,编辑于2022年,星期五NURBS曲线的权因子l每一个权因子对应于一个控制顶点l通过调整权因子的大小可以调整曲线的形状。l当所有的权因子i=1时,就是B-样条曲线;l当某个权因子i=0时,对应的控制顶点对曲线的形状没有影响l当i时,曲线R(u)Ri,即曲线过点Ri 30第30页,共49页,编辑于2022年,星期五NURBS曲线的例子NURBS曲线权因子对曲线形状的影响31第31页,共49页,编辑于2022年,星期五NURBS曲线表示圆用三个120圆弧表示圆:u=0 0 0 1 1 2 2 3 3 3k=3i=1,1,1,
7、1控制顶点分布如右图所示NURBS曲线表示圆R0R6R1R2R3R4R532第32页,共49页,编辑于2022年,星期五内容l参数曲面表示l参数表示的数学原理l参数曲线l参数曲面lBzier曲面lB-样条曲面lNURBS曲面33第33页,共49页,编辑于2022年,星期五双三次Bzier曲面实列双三次Bzier曲面实例34第34页,共49页,编辑于2022年,星期五lmn次Bzier曲面:lBi,m(u)和Bj,n(v)为Bernstein基函数 lRij规则连接形成控制网 Bzier曲面35第35页,共49页,编辑于2022年,星期五Bzier曲面性质lBzier曲面的控制顶点所形成的控制网
8、格大致反应了曲面的形状,所以可通过编辑控制顶点的方式来实现对曲面形状的改变 36第36页,共49页,编辑于2022年,星期五Bzier曲面性质lBzier曲面通过四个角点处的控制顶点 37第37页,共49页,编辑于2022年,星期五Bzier曲面性质l在角点处曲面与控制多边形相切 lBzier曲面具有剖分算法:用加密的控制多边形来逼近显示Bzier曲面 38第38页,共49页,编辑于2022年,星期五Bzier曲面的不足l全局性:当移动一个控制顶点的位置时,整个曲面的形状会发生改变,这对于外形设计是很不方便的 l生成复杂外形需要多个Bzier曲面的光滑拼接,十分复杂39第39页,共49页,编辑
9、于2022年,星期五内容l参数曲面表示l参数表示的数学原理l参数曲线l参数曲面lBzier曲面lB-样条曲面lNURBS曲面40第40页,共49页,编辑于2022年,星期五lB-样条曲面定义:l次数:kukvl控制顶点数:(nu+1)(nv+1)l节点向量 B-样条曲面 41第41页,共49页,编辑于2022年,星期五B-样条曲面Rij为控制顶点 Ni,ku(u)和Ni,kv(v)分别为定义在节点向量u和v上的规范化B-样条基函数 42第42页,共49页,编辑于2022年,星期五B-样条曲面的重要性质l局部性质l控制顶点数目lBzier曲面的次数确定后,控制顶点数目就定了lB-样条曲面的次数确
10、定后,控制顶点数目可任意l其它性质:参考曲线情形43第43页,共49页,编辑于2022年,星期五B-样条曲面实例具有66个控制顶点双三次B-样条曲面:(a)均匀节点向量u=v=-4,-3,-2,-1,0,1,2,3,4,5,所构造曲面不插值角点(b)具有端点处4阶重节点的节点向量u=v=0,0,0,0,1,2,3,3,3,3,曲面插值角点(c)采用了与图(b)相同的节点向量,扰动顶点R4,4的位置后,其形状变化的红色区域局限于变动顶点的邻域中(a)均匀节点(b)端点重节点(c)B-样条曲面的局部性R0,0R5,0R5,5R0,5R0,0R5,0R5,5R0,5R5,0R4,4R0,5R5,5R
11、0,044第44页,共49页,编辑于2022年,星期五B-样条曲面的不足l不能精确表示常用的二次曲面:如球面、圆柱面、圆锥面等45第45页,共49页,编辑于2022年,星期五内容l参数曲面表示l参数表示的数学原理l参数曲线l参数曲面lBzier曲面lB-样条曲面lNURBS曲面46第46页,共49页,编辑于2022年,星期五NURBS曲面lNURBS曲面l增加了权因子作为形状控制手段l包含B-样条曲面和Bzier曲面l可以精确表示机械零件中常用的二次曲面l工业产品几何定义的STEP标准(1991年):l自由曲线曲面唯一地采用NURBS表示47第47页,共49页,编辑于2022年,星期五NURBS曲面表示球面NURBS精确表示的球面及其控制顶点48第48页,共49页,编辑于2022年,星期五小结l物体的参数曲面表示l参数表示的数学原理:曲线、曲面l参数曲线:Bzier、B-样条和NURBS曲线l参数曲面:Bzier、B-样条和NURBS曲面49第49页,共49页,编辑于2022年,星期五
限制150内