2023年七年级人教版数学教案正数和负数人教版七年级上册正数和负数教案(五篇).docx
《2023年七年级人教版数学教案正数和负数人教版七年级上册正数和负数教案(五篇).docx》由会员分享,可在线阅读,更多相关《2023年七年级人教版数学教案正数和负数人教版七年级上册正数和负数教案(五篇).docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2023年七年级人教版数学教案正数和负数人教版七年级上册正数和负数教案(五篇)2023年七年级人教版数学教案正数和负数 人教版七年级上册正数和负数教案篇一 复习详细数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0)的求根公式的推导,并应用公式法解一元二次方程。 重点 求根公式的推导和公式法的应用。 难点 一元二次方程求根公式的推导。 一、复习引入 1、前面我们学习过解一元二次方程的“直接开平方法”,比方,方程 (1)x2=4(2)(x-2)2=7 提问1这种解法的(理论)依据是什么? 提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特别二次方程有效,不能实施于
2、一般形式的二次方程。) 2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。) (学生活动)用配方法解方程2x2+3=7x (教师点评)略 总结用配方法解一元二次方程的步骤(学生总结,教师点评)。 (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边; (4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; (5)变形为(x+p)2=q的形式,假如q0,方程的根是x=-pq;假如q0,方程无实根。 二、探究新知 用配方法解方程: (1)ax2-7x+3=0(2)ax2+bx+3=0 假如这个一元二次方程是一般
3、形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。 问题:已知ax2+bx+c=0(a0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程肯定有解吗?什么状况下有解?) 分析:由于前面详细数字已做得许多,我们现在不妨把a,b,c也当成一个详细数字,依据上面的解题步骤就可以始终推下去。 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+bax=-ca 配方,得:x2+bax+(b2a)2=-ca+(b2a)2 即(x+b2a)2=b2-4ac4a2 4a20,当b2-4ac0时,b2-4ac4a2
4、0 (x+b2a)2=(b2-4ac2a)2 直接开平方,得:x+b2a=b2-4ac2a 即x=-bb2-4ac2a x1=-b+b2-4ac2a,x2=-b-b2-4ac2a 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a,b,c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a,b,c代入式子x=-bb2-4ac2a就得到方程的根。 (2)这个式子叫做一元二次方程的求根公式。 (3)利用求根公式解一元二次方程的方法叫公式法。 公式的理解 (4)由求根公式可知,一元二次方程最多有两个实数根。 例1用公式法解以下
5、方程: (1)2x2-x-1=0(2)x2+1.5=-3x (3)x2-2x+12=0(4)4x2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。 补:(5)(x-2)(3x-5)=0 三、稳固练习 教材第12页练习1.(1)(3)(5)或(2)(4)(6)。 四、课堂小结 本节课应把握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,留意移项要变号,尽量让a0;2)找出系数a,b,c,留意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,
6、代入求根公式,算出结果。 (4)初步了解一元二次方程根的状况。 五、作业布置 教材第17页习题4 2023年七年级人教版数学教案正数和负数 人教版七年级上册正数和负数教案篇二 一、背景学问 有理数的大小比拟选自浙江版义务教育课程标准试验教科书数学七年级(上册)第一章从自然数到有理数的第5节,有理数大小比拟的提出是从学生生活熟识的情境入手,借助于气温的凹凸及数轴,得出有理数的大小比拟方法。课本安排了“做一做“等形式多样的教学活动,让学生通过观看、思索和自己动手操作,体验有理数大小比拟法则的探究过程。 二、教学目标 1、使学生能说出有理数大小的比拟法则 2、能娴熟运用法则结合数轴比拟有理数的大小,
7、特殊是应用肯定值概念比拟两个负数的大小,能利用数轴对多个有理数进展有序排列。 3、能正确运用符号“写出表示推理过程中简洁的因果关系。 三、教学重点与难点 重点:运用法则借助数轴比拟两个有理数的大小。 难点:利用肯定值概念比拟两个负分数的大小。 四、教学预备 多媒体课件 五、教学设计 (一)沟通对话,探究新知 1、说一说 (多媒体显示)某一天我们5个城市的最低气温从刚刚的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10比上海的最低气温0高,有些学生会说哈尔滨的最低气温零下20比北京的最低气温零下10低等;不会说的,教师适当点拔,从而学生在
8、合作沟通中不知不觉地完成了以下填空。 比拟这一天以下两个城市间最低气温的凹凸(填“高于“或“低于“) 广州_上海;北京_上海;北京_哈尔滨;武汉_哈尔滨;武汉_广州。 2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观看这5个数在数轴上的位置,从中你发觉了什么? (3)温度的凹凸与相应的数在数轴上的位置有什么? (通过学生自己动手操作,观看、思索,发觉原点左边的数都是负数,原点右边的数都是正数;同时也发觉5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探究学问的欲望
9、,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探究的乐趣,在探究中不知不觉获得了学问。)由小组争论后,教师归纳得出结论: 在数轴上表示的两个数,右边的数总比左边的数大。 正数都大于零,负数都小于零,正数大于负数。 (二)应用新知,体验胜利 1、练一练(师生共同完成例1后,学生完成随堂练习1) 例1:在数轴上表示数5,0,-4,-1,并比拟它们的大小,将它们按从小到大的挨次用“号连接。(师生共同完成) 分析:此题意有几层含义?应分几步? 要点总结:小组争论归纳,此题解题时的一般步骤:画数轴描点;有序排列;不等号连接。 随堂练习: p19 t1 2、做一做 (1)在数轴上表示以下各对
10、数,并比拟它们的大小 2和7-6和-1-6和-36-和-1.5 (2)求出图中各对数的肯定值,并比拟它们的大小。 (3)由、从中你发觉了什么? (学生小组争论后,代表站起来发言,口述自己组的发觉,说明自己组发觉的过程,逐步培育学生观看、归纳、用数学语言表达数学规律的力量。) 要点总结:两个正数比拟大小,肯定值大的数大;两个负数比拟大小,肯定值大的数反而小。 在学生争论的根底上,由学生总结得出有理数大小的比拟法则。 (1)正数都大于零,负数都小于零,正数大于负数。 (2)两个正数比拟大小,肯定值大的数大。 (3)两个负数比拟大小,肯定值大的数反而小。 3、师生共同完成例2后,学生完成随堂练习2、
11、3、4。 例2比拟以下每对数的大小,并说明理由:(师生共同完成) (1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8| 分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比拟。同时在讲解时,要留意格式。 注:肯定值比拟时,分母一样,分子大的数大;分子一样,则分母大的数反而小;分子分母都不一样时,则应先通分再比拟,或把分子化一样再比拟。 两个负数比拟大小时的一般步骤:求肯定值;比拟肯定值的大小;比拟负数的大小。 思索:还有别的方法吗?(分组争论,积极思索) 4、想一想:我们有几种方法来推断有理数的大小?你认为它们各有什么特点
12、? 由学生争论后,得出比拟有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比拟时一般选用第一种,当多个有理数比拟大小时,一般选用其次种较好。 练一练:p19 t2、3、4 5、考考你:请你答复以下问题: (1)有没有的有理数,有没有最小的有理数,为什么? (2)有没有肯定值最小的有理数?若有,请把它写出来? (3)在于-1.5且小于4.2的整数有_个,它们分别是_。 (4)若a0,b0,a|b|,则你能比拟a、b、-a、-b这四个数的大小吗?(此题属提高题,不要求全体学生把握) (新奇的问题会激发学生的奇怪心,通过合作沟通,自主探究等活动,培育学生思维的习惯和数学语言的表达力量
13、) 6、议一议,谈谈本节课你有哪些收获 (由师生共同完本钱节课的小结)本节课主要学习了有理数大小比拟的两种方法,一种是根据法则,两两比拟,另一种是利用数轴,运用这种方法时,首先必需把要比拟的数在数轴上表示出来,然后根据它们在数轴上的位置,从左到右(或从右到左)用“(或“)连接,这种方法在比拟多个有理数大小时特别简便。 六、布置作业:p19 a组、b组 根底好的a、b两组都做 根底较差的同学选做a组。 2023年七年级人教版数学教案正数和负数 人教版七年级上册正数和负数教案篇三 一。教学目标: 1、认知目标: 1)了解二元一次方程组的概念。 2)理解二元一次方程组的解的概念。 3)会用列表尝试的
14、方法找二元一次方程组的解。 2、力量目标: 1)渗透把实际问题抽象成数学模型的思想。 2)通过尝试求解,培育学生的探究力量。 3、情感目标: 1)培育学生细致,仔细的学习习惯。 2)在积极的教学评价中,促进师生的情感沟通。 二。教学重难点 重点:二元一次方程组及其解的概念 难点:用列表尝试的方法求出方程组的解。 三。教学过程 (一)创设情景,引入课题 1、本班共有40人,请问能确定男_几人吗?为什么? (1)假如设本班男生x人,_人,用方程如何表示?(x+y=40) (2)这是什么方程?依据什么? 2、男生比_了2人。设男生x人,_人。方程如何表示?x,y的值是多少? 3、本班男生比_2人且男
15、_40人。设该班男生x人,_人。方程如何表示? 两个方程中的x表示什么?类似的两个方程中的y都表示? 象这样,同一个未知数表示一样的量,我们就应用大括号把它们连起来组成一个方程组。 4、点明课题:二元一次方程组。 设计意图:从学生身边取数据,让他们感受到生活中到处有数学 (二)探究新知,练习稳固 1、二元一次方程组的概念 (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。 让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。 (2)练习:推断以下是不是二元一次方程组: x+y=3,x+y=200, 2x-3=7,3x+4y=3 y+z=5,x=y+10, 2
16、y+1=5,4x-y2=2 学生作出推断并要说明理由。 2、二元一次方程组的解的概念 (1)由学生给出引例的答案,教师指出这就是此方程组的解。 (2)练习:把以下各组数的题序填入图中适当的位置: x=1;x=-2;x=;-x= y=0;y=2;y=1;y= 方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。 2x+3y=2 (3)既满意第一个方程也满意其次个方程的解叫作二元一次方程组的解。 (4)练习:已知x=0是方程组x-b=y的解,求a,b的值。 y=0.55x+2a=2y (三)合作探究,尝试求解 现在我们一起来探究如何查找方程组的解呢? 1、已知两个整数x,y,试找出方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年级 人教版 数学教案 正数 负数 人教版七 上册 教案
限制150内