CH因子分析实用.pptx
《CH因子分析实用.pptx》由会员分享,可在线阅读,更多相关《CH因子分析实用.pptx(86页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:称 是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。第1页/共86页2注:注:因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子有非常明确的实际意义;主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,而因子分析需要构造因子模型。主成分分析:原始变量的线性组合表示新的综合变量,即主成分;因子分析:潜在
2、的假想变量和随机影响变量的线性组合表示原始变量。第2页/共86页3 2 因子分析模型因子分析模型 一、数学模型 设 个变量,如果表示为第3页/共86页4 称为 公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且满足:即不相关;即 互不相关,方差为1。第4页/共86页5即互不相关,方差不一定相等,。第5页/共86页6用矩阵的表达方式第6页/共86页7二、因子分析模型的性质1、原始变量X的协方差矩阵的分解D的主对角线上的元素值越小,则公共因子共享的成分越多。第7页/共86页8 2、模型不受计量单位的影响 将原始变量X做变换X*=CX,这里Cdia
3、g(c1,c2,cn),ci0。第8页/共86页9第9页/共86页10 3、因子载荷不是惟一的 设T为一个pp的正交矩阵,令A*=AT,F*=TF,则模型可以表示为且满足条件因子模型的条件第10页/共86页11 三、因子载荷矩阵中的几个统计特征 1 1、因子载荷a aijij的统计意义 因子载荷 是第i个变量与第j个公共因子的相关系数模型为 在上式的左右两边乘以,再求数学期望 根据公共因子的模型性质,有 (载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关重要性。绝对值越大,相关的密切程度越高。第11页/共86页12 2 2、变量共同度的统计意义定义:变量 的共同度是因子载
4、荷矩阵的第i行的元素的平方和。记为统计意义:两边求方差 所有的公共因子和特殊因子对变量 的贡献为1。如果 非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。第12页/共86页13 3 3、公共因子 方差贡献的统计意义因子载荷矩阵中各列元素的平方和 称为所有的 对 的方差贡献和。衡量的相对重要性。第13页/共86页14 3 3 因子载荷矩阵的估计方法 设随机向量 的均值为,协方差为,为的特征根,为对应的标准化特征向量,则(一)主成分分析法第14页/共86页15 上式给出的 表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去
5、后面的p-m项的贡献,有第15页/共86页16 上式有一个假定,模型中的特殊因子是不重要的,因而从 的分解中忽略了特殊因子的方差。第16页/共86页17注:残差矩阵其中S为样本的协方差矩阵。第17页/共86页18 (二)主因子法 主因子方法是对主成分方法的修正,假定我们首先对变量进行标准化变换。则 R=AA+D R*=AA=R-D称R*为约相关矩阵,R*对角线上的元素是 ,而不是1。第18页/共86页19直接求R*的前p个特征根和对应的正交特征向量。得如下的矩阵:第19页/共86页20 当特殊因子 的方差不为且已知的,问题非常好解决。第20页/共86页21第21页/共86页22 在实际的应用中
6、,个性方差矩阵一般都是未知的,可以通过一组样本来估计。估计的方法有如下几种:首先,求 的初始估计值,构造出1)取 ,在这个情况下主因子解与主成分解等价;2)取 ,为xi与其他所有的原始变量xj的复相关系数的平方,即xi对其余的p-1个xj的回归方程的判定系数,这是因为xi 与公共因子的关系是通过其余的p-1个xj 的线性组合联系起来的;第22页/共86页23 2)取 ,这意味着取xi与其余的xj的简单相关系数的绝对值最大者;4)取 ,其中要求该值为正数。5)取 ,其中 是 的对角元素。第23页/共86页26 例 假定某地固定资产投资率 ,通货膨胀率 ,失业率 ,相关系数矩阵为试用主成分分析法求
7、因子分析模型。第26页/共86页27 特征根为:第27页/共86页28 可取前两个因子F1和F2为公共因子,第一公因子F1物价就业因子,对X的贡献为1.55。第一公因子F2为投资因子,对X的贡献为0.85。共同度分别为1,0.706,0.706。第28页/共86页29 假定某地固定资产投资率 ,通货膨胀率 ,失业率 ,相关系数矩阵为试用主因子分析法求因子分析模型。假定用代替初始的 。第29页/共86页30特征根为:对应的非零特征向量为:第30页/共86页31第31页/共86页32 4 因子旋转(正交变换)因子旋转(正交变换)建立了因子分析数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的
8、要知道每个公共因子的意义,以便进行进一步的分析,如果每个公共因子的含义不清,则不便于进行实际背景的解释。由于因子载荷阵是不惟一的,所以应该对因子载荷阵进行旋转。目的是使因子载荷阵的结构简化,使载荷矩阵每列或行的元素平方值向0和1两极分化。有三种主要的正交旋转法。四次方最大法、方差最大法和等量最大法。(一)为什么要旋转因子第32页/共86页33 百米跑成绩 跳远成绩 铅球成绩 跳高成绩 400米跑成绩 百米跨栏 铁饼成绩 撑杆跳远成绩 标枪成绩 1500米跑成绩奥运会十项全能运动项目得分数据的因子分析第33页/共86页34第34页/共86页35 因子载荷矩阵可以看出,除第一因子在所有的变量在公共
9、因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表第35页/共86页36第36页/共86页37 通过旋转,因子有了较为明确的含义。百米跑,跳远和 400米跑,需要爆发力的项目在 有较大的载荷,可以称为短跑速度因子;铅球,铁饼和 标枪在 上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为 跳高在 上有较大的载荷,爆发腿力因子;长跑耐力因子。第37页/共86页38变换后因子的共同度设 正交矩阵,做正交变换变换后因子的共同度没有发生变化!(二)旋转方法第38页/共86页39变换后
10、因子贡献设 正交矩阵,做正交变换变换后因子的贡献发生了变化!第39页/共86页40 1、方差最大法 方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。第40页/共86页41第41页/共86页42第42页/共86页43第43页/共86页47 5 因子得分(一)因子得分的概念 前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的因子
11、作为自变量来做回归分析,对样本进行分类或评价,这就需要我们对公共因子进行测度,即给出公共因子的值。第47页/共86页48 人人均均要要素素变变量量因因子子分分析析。对我国32个省市自治区的要素状况作因子分析。指标体系中有如下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人)Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1 -0.21522 -0.27397 0.89092 X2 0.63973 -0.287
12、39 -0.28755 X3 -0.15791 0.06334 0.94855 X4 0.95898 -0.01501 -0.07556 X5 0.97224 -0.06778 -0.17535 X6 -0.11416 0.98328 -0.08300 X7 -0.11041 0.97851 -0.07246第48页/共86页49高载荷指标因子命名因子1X2;面积(万平方公里)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)自然资源因子因子2X6:万人拥有的大学生数(人)X7:万人拥有的科学家、工程师数(人)人力资源因子因子3X1;人口(万人)X3:GDP(亿元)经济发展总量因子 X1
13、=-0.21522F1-0.27397F2+0.89092F3 X2=0.63973F1-0.28739F2-0.28755F3 X3=-0.15791F1+0.06334F2+0.94855F3 X4=0.95898F1-0.01501F2-0.07556F3 X5=0.97224F1-0.06778F2-0.17535F3 X6=-0.11416F1+0.98328F2-0.08300F3 X7=-0.11041F1+0.97851F2-0.07246F3第49页/共86页50 Standardized Scoring Coefficients FACTOR1 FACTOR2 FACTOR
14、3 X1 0.05764 -0.06098 0.50391 X2 0.22724 -0.09901 -0.07713 X3 0.14635 0.12957 0.59715 X4 0.47920 0.11228 0.17062 X5 0.45583 0.07419 0.10129 X6 0.05416 0.48629 0.04099 X7 0.05790 0.48562 0.04822F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F1=0.05764X1+0.22724X2+0.14635X3+0.
15、47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CH 因子分析 实用
限制150内