随机过程课件.pptx





《随机过程课件.pptx》由会员分享,可在线阅读,更多相关《随机过程课件.pptx(78页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1第五章第五章 大数定律和中心极限定理大数定律和中心极限定理 关键词:契比雪夫不等式大数定律中心极限定理第1页/共78页21 1 大数定律大数定律背景 本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证为了证明大数定理,先介绍一个重要不等式第2页/共78页3第3页/共78页4 例1:在n重贝努里试验中,若已知每次试验事件A出现的概率为0.75,试利用契比雪夫不等式,(1)若n=7500,估计A出现的频率在0.74至0.76之间的概率至少有多大;(2)估计n,使A出现的频率在0.74至0.76之间的概率不小于0.90。第4页/共78页5 随机变量序列依概率收敛的定义 第5页/共7
2、8页6第6页/共78页7契比雪夫大数定律表明,当n很大时,的算术平均 接近于数学期望 。这种接近是在概率意义下的接近。此外,定理中要求随机变量的方差存在,但当随机变量服从相同分布时,就不需要这一要求。第7页/共78页8 例2:第8页/共78页9大数定律的重要意义:贝努里大数定律建立了在大量重复独立试验中事件出现频率的稳定性,正因为这种稳定性,概率的概念才有客观意义,贝努里大数定律还提供了通过试验来确定事件概率的方法,既然频率nA/n与概率p有较大偏差的可能性很小,我们便可以通过做试验确定某事件发生的频率并把它作为相应的概率估计,这种方法即是在第7章将要介绍的参数估计法,参数估计的重要理论基础之
3、一就是大数定理。第9页/共78页102 2 中心极限定理中心极限定理背景:有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。第10页/共78页11第11页/共78页12第12页/共78页13 例3:设某种电器元件的寿命服从均值为100小时的指 数分布,现随机取得16只,设它们的寿命是相互 独立的,求这16只元件的寿命的总和大于1920小 时的概率。第13页/共78页14 例4
4、:某保险公司的老年人寿保险有1万人参加,每人每年交200元,若老人在该年内死亡,公司付给受益人1万元。设老年人死亡率为0.017,试求保险公司在一年内这项保险亏本的概率。第14页/共78页15 例5:设某工厂有400台同类机器,各台机器发生故障的概 率都是0.02,各台机器工作是相互独立的,试求机 器出故障的台数不小于2的概率。第15页/共78页16 例6:第16页/共78页17 例7:(例1续)在n重贝努里试验中,若已知每次试验事件A出现的概率为0.75,试利用中心极限定理,(1)若n=7500,估计A出现的频率在0.74至0.76之间的概率近似值;(2)估计n,使A出现的频率在0.74至0
5、.76之间的概率不小于0.90。第17页/共78页18 随 机 过 程第18页/共78页19关键词:随机过程 状态和状态空间 样本函数 有限维分布函数 均值函数 方差函数 自相关函数自协方差函数 互相关函数互协方差函数 正态过程 独立增量过程 泊松过程 维纳过程第十章第十章 随机过程及其统计描述随机过程及其统计描述第19页/共78页201 1 随机过程的概念随机过程的概念 随机过程随机过程被认为是概率论的“动力学”部分,即它的研究对象是随时间演变的随机现象,它是从多维随机变量向一族(无限多个)随机变量的推广。给定一随机试验E,其样本空间S=e,将样本空间中的每一元作如下对应,便得到一系列结果:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机 过程 课件

限制150内