《数字修约规则幻灯片.ppt》由会员分享,可在线阅读,更多相关《数字修约规则幻灯片.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数字修约规则数字修约规则第1页,共25页,编辑于2022年,星期六uu数字修约规则数字修约规则uu有效数字及其运算有效数字及其运算 uu有效数字具体应用有效数字具体应用第2页,共25页,编辑于2022年,星期六v 数字修约规则数字修约规则 我国科学技术委员会正式颁布的数字修约规则,通常称为“四舍六入五成双”法则。四舍六入五考虑,即当尾数4时舍去,尾数为6时进位。当尾数4舍为5时,则应是末位数是奇数还是偶数,5前为偶数应将5舍去,5前为奇数应将5进位。第3页,共25页,编辑于2022年,星期六uu这一法则的具体运用如下:1.1.将28.175和28.165处理成4位有效数字,则分别为28.18和
2、28.16。2.2.若被舍弃的第一位数字大于5,则其前一位数字加1。例如:28.2645处理成3位有效数字时,其被舍去的第一位数字为6,大于5,则有效数字应为28.3。第4页,共25页,编辑于2022年,星期六3.3.若被舍其的第一位数字等于5,而其后数字全部为零时,则是被保留末位数字为奇数或偶数(零视为偶),而定进或舍,末位数是奇数时进1,末位数为偶数时还进1,例如:28.350、28.250、28.050处理成3位有效数字时,分别为28.4、28.2、28.0。4.4.若被舍弃的第一位数字为5,而其后的数字并非全部为零时,则进1,例如28.2501,只取3位有效数字时,成为28.3。第5页
3、,共25页,编辑于2022年,星期六5.5.若被舍弃的数字包括几位数字时,不得对该数字进行连续修约,而应根据以上各条作一次处理。例如:2.154546,只取3位有效数字时,应该为2.15,不得按下法连续修约为2.16:2.1545462.154552.15462.1552.16第6页,共25页,编辑于2022年,星期六v 有效数字及其运算 实验离不开测量,测量是借助仪器读取数据,测量的结果总有误差。那么,实验中如何读取数据,测得的数据如何进行运算,才能既方便,又具有合理的准确度呢?这就是有效数字及其运算所要讨论的问题。下面将作简要介绍。第7页,共25页,编辑于2022年,星期六uu 2.1 有
4、效数字的意义2.1.1有效数字的定义 我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做存疑数字。把测量结果中能够反映被测量大小的带有一位存疑数字的全部数字叫有效数字。如上例中测得物体的长度7.45cm。数据记录时,我们记录的数据和实验结果的表述中的数据便是有效数字。第8页,共25页,编辑于2022年,星期六2.1.2.仪器的读数规则 在实验中,使用仪器读取待测量的数值时,所读取的数字的准确程度直接受仪器本身的精密度最小刻度的限制。为了获得较好的测量结果,在读取数字时,我们通常的作法是:首先读出能够从仪器上直接读出的准确数字,对余下部分再进行估计读数。即将读数过程分为直读
5、和估读。第9页,共25页,编辑于2022年,星期六 例如:用米尺测量一物体的长度时,物体的长度在7.47.5厘米之间。那么首先直读,可以直接读出的部分准确数字应为7.4cm;然后估读,估计余下部分约为0.5mm,物体的长度即为7.45cm。其中7.4cm部分为可靠数字,0.05cm部分为存疑数字。第10页,共25页,编辑于2022年,星期六2.1.3.说明实验中的数字与数学上的数字是不一样的。实验中的数字与数学上的数字是不一样的。例如例如:数学的数学的 8.35=8.350=8.3500,8.35=8.350=8.3500,而实验的而实验的 8.358.3508.35008.358.3508.
6、3500。有效数字的位数与被测量的大小和仪器的精密度有关。如有效数字的位数与被测量的大小和仪器的精密度有关。如前例中测得物体的长度为前例中测得物体的长度为7.45cm7.45cm,若用千分尺来测,其有,若用千分尺来测,其有效数字的位数有五位。效数字的位数有五位。第一个非零数字前的零不是有效数字。第一个非零数字前的零不是有效数字。例如:0.0125有效数字的位数是三位。第11页,共25页,编辑于2022年,星期六第一个非零数字开始的所有数字第一个非零数字开始的所有数字(包括零包括零)都是有效数字。都是有效数字。例如例如:12500有效数字的位数是五位。单位的变换不能改变有效数字的位数。因此,实验
7、中单位的变换不能改变有效数字的位数。因此,实验中要求尽量使用科学计数法表示数据。要求尽量使用科学计数法表示数据。例如例如:100.2m 100.2m可记为可记为0.1002km0.1002km。但若用。但若用cmcm和和mmmm作单位时,作单位时,数学上可记为数学上可记为10020cm10020cm和和100200mm100200mm,但却改变了有效数字,但却改变了有效数字的位数。而采用科学计数法就不会产生这个问题了。的位数。而采用科学计数法就不会产生这个问题了。第12页,共25页,编辑于2022年,星期六有效数字与不确定度的关系。有效数字的末位是估读数字,存在不确定性。一般情况有效数字的末位
8、是估读数字,存在不确定性。一般情况下不确定度的有效数字只取一位,其数位即是测量结果下不确定度的有效数字只取一位,其数位即是测量结果的存疑数字的位置;有时不确定度需要取两位数字,其的存疑数字的位置;有时不确定度需要取两位数字,其最后一个数位才与测量结果的存疑数字的位置对应。最后一个数位才与测量结果的存疑数字的位置对应。第13页,共25页,编辑于2022年,星期六 注意:由于有效数字的最后一位是不确定度所在的位置,因此有效数字在一定程度上反映了测量值的不确定度(或误差限值)。测量值的有效数字位数越多,测量的相对不确定度越小;有效数字位数越少,相对不确定度就越大。可见,有效数字可以粗略反映测量结果的
9、不确定度。第14页,共25页,编辑于2022年,星期六uu 2.2运算规则 一般来讲,有效数字的运算过程中,有很多规则。为了应用方便,我们本着实用的原则,加以选择后,将其归纳整理为如下两类,即一般规则和具体规则。第15页,共25页,编辑于2022年,星期六2.2.1一般规则 可靠数字之间运算的结果为可靠数字。可靠数字与存疑数字,存疑数字与存疑数字之间运算可靠数字与存疑数字,存疑数字与存疑数字之间运算的结果为存疑数字。的结果为存疑数字。测量数据一般只保留一位存疑数字。第16页,共25页,编辑于2022年,星期六运算结果的有效数字位数不由数学或物理常数来确定,运算结果的有效数字位数不由数学或物理常
10、数来确定,数学与物理常数的有效数字位数可任意选取,一般选数学与物理常数的有效数字位数可任意选取,一般选取的位数应比测量数据中位数最少者多取一位。取的位数应比测量数据中位数最少者多取一位。运算结果将多余的存疑数字舍去时应按照运算结果将多余的存疑数字舍去时应按照“四舍六入四舍六入五凑偶五凑偶”的法则进行处理。即小于等于四则舍;大于六则入;等于五时,根据其前一位按奇入偶舍处理(等几率原则)。例如:3.625 3.625化为化为3.623.62,4.2354.235则化为则化为4.244.24。第17页,共25页,编辑于2022年,星期六2.2.2具体规则 有效数字相加(减)的结果的末位数字所在的位置
11、应按各量中存疑数字所在数位最前的一个为准来决定。例如:30.4 26.65 +4.325-3.905 34.72522.745 取30.4+4.325=34.7,26.65-3.905=22.74。第18页,共25页,编辑于2022年,星期六乘乘(除除)运算后的有效数字的位数与参与运算的数字中有效运算后的有效数字的位数与参与运算的数字中有效数字位数最少的相同。数字位数最少的相同。例如例如:2.51.26=3.15 2.51.26=3.15,取,取 3.2 3.2;4.600.25=18.4 4.600.25=18.4,取,取1818。第19页,共25页,编辑于2022年,星期六v 有效数字具体
12、应用有效数字具体应用有效数字的位数,不仅表示数值的大小,还反映测定有效数字的位数,不仅表示数值的大小,还反映测定的精确程度。的精确程度。例如:一支刻度到例如:一支刻度到0.1ml0.1ml的滴定管读数最多只能读到的滴定管读数最多只能读到0.01ml0.01ml,如,如2.52ml2.52ml,但一支刻度到,但一支刻度到0.01ml0.01ml的微量滴定管的微量滴定管读数就可读到读数就可读到0.001ml0.001ml,如,如2.524ml2.524ml,这两个读数的末位,这两个读数的末位数字数字2 2和和4 4均是估计数。均是估计数。第20页,共25页,编辑于2022年,星期六还有,一个精度还
13、有,一个精度0.01g0.01g的天平,最大称量为的天平,最大称量为500g500g,能称出,能称出100.32g100.32g、11.33g11.33g等等,这两个读数的末位数字等等,这两个读数的末位数字2 2和和3 3均是均是估计数,不论用的天平是数字的还是刻度的。有人把标估计数,不论用的天平是数字的还是刻度的。有人把标准中称准中称5.0g5.0g(精确到(精确到0.01g0.01g)就写成)就写成5.0g5.0g,我认为你使用,我认为你使用的天平精度为的天平精度为0.1g0.1g,不能满足精度,不能满足精度0.01g0.01g的要求。分析天的要求。分析天平读数末位数字均是估计数,结果误差
14、平读数末位数字均是估计数,结果误差1mg1mg。第21页,共25页,编辑于2022年,星期六 例如:末位数字是8的结果有“9”、“8”、“7”三个可能。标准中给出称量1g,精确到0.0001g,应该理解为:1g10%,0.91.0g之间,如0.0993;1.1000;1.0038g均符合要求,如果称量0.6381g,误差就大了。第22页,共25页,编辑于2022年,星期六 书写清晰、使用法定计量单位书写清晰、使用法定计量单位:我国计量法明确规定,我国实行法定计量单位制我国计量法明确规定,我国实行法定计量单位制度。法定计量单位是政府以法令形式明确规定在全国度。法定计量单位是政府以法令形式明确规定
15、在全国范围内采用的计量单位。范围内采用的计量单位。19841984年年2 2月月2727日发布的计量法日发布的计量法规定规定“国家采用国际单位制国家采用国际单位制”,国际单位制计量单位,国际单位制计量单位和国家选定的其他计量单位为和国家选定的其他计量单位为“国家法定计量单位国家法定计量单位”。国际单位制是我国法定计量单位的主体,国际单位制国际单位制是我国法定计量单位的主体,国际单位制如有变化,我国法定计量单位也将随着变化。国际单如有变化,我国法定计量单位也将随着变化。国际单位制用符号位制用符号SISI表示。表示。第23页,共25页,编辑于2022年,星期六国际单位制的七个基本单位:长度,米(m);质量,千克(kg);时间,秒(s);电流,安(A);热力学温度,开(K);物质的量,摩尔(mol);发光强度,坎德拉(Cd)。第24页,共25页,编辑于2022年,星期六4 谢谢第25页,共25页,编辑于2022年,星期六
限制150内