基于图像盲恢复的算法研究.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《基于图像盲恢复的算法研究.docx》由会员分享,可在线阅读,更多相关《基于图像盲恢复的算法研究.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、工程建筑学相关资料ENGINEERING ARCHITECTURE RELATED INFORMATION基于图像盲恢复的算法研究 论文关键词: 图像盲恢复 现状前景 论文摘要: 当点扩展函数未知或不确知的情况下, 从观察到的退化图像中恢复原始图像的过程称为图像盲复原。近年来, 图像盲复原算法得到了广泛的研究。本文在介绍了盲图像恢复算法的现状的基础上进一步研究其的发展方向。 一、引言 图像恢复是图像处理中的一大领域,有着广泛的应用,正成为当前研究的热点。图像恢复的主要目的是使退化图像经过一定的加工处理,去掉退化因素,以最大的保真度恢复成原来的图像。传统的图像恢复假设图像的降质模型是己知的。而许
2、多情况下,图像的降质模型未知或具有较少的先验知识,必须进行所谓的盲恢复。其重要性和艰巨性而成为一个研究热点。目前所能获取的观测图像是真实图像经过观测系统成像的结果。由于观测系统本身物理特性的限制,同时受观测环境的影响,观测图像和真实图像之间不可避免地存在着偏差和失真,称观测系统对真实图像产生了降质。图像恢复的目的就是根据降质的观测图像分析和计算得出真实图像。 二、图像盲恢复算法的现状 总体来说, 图像盲复原方法主要分为以下两类: 一是首先利用真实图像的特别特征估计PSF,然后借助估计得到的PSF,采用经典的图像复原方法进行图像的复原。这类方法将PSF的估计与图像的复原过程分为2个不同的过程,因
3、而具有较少计算量的特点;二是PSF辨识和真实图像估计相结合,同时辨识PSF和真实图像。这类算法较为复杂,计算量较大。另外,对于点扩展函数也考虑了空间变化的复杂情况。针对目前的盲复原算法的现状,根据退化模型的特点, 重新将算法分为空间不变的单通道盲复原算法、空间不变多通道盲复原算法和空间变化图像盲复原算法3类。 (一)单通道空间不变图像盲复原算法 在这类算法中, 最为常用的是参数法和迭代法。 1)参数法。所谓参数法, 即模型参数法, 就是将PSF和真实图像用某一类模型加以描述, 但模型的参数需要进行辨识。在参数法中, 典型的有先验模糊辨识法和ARMA 参数估计法, 前者先辨识PSF的模型参数,后
4、辨识真实图像, 属于第1 种类型的图像盲复原算法, 因而计算量较小;后者同时辨识PSF和真实图像模型参数, 属于第2种类型图像盲复原算法。 2)迭代法。所谓的迭代法, 不是通过建立模型而是通过算法的迭代过程, 加上有关真实图像和PSF的约束来同时辨识PSF和真实图像的方法。迭代法是单通道 图像盲复原算法中应用最广泛的一类算法, 它不需建立模型, 也不要求PSF 为最小相位系统, 因而跟实际更为接近。在这类算法中, 迭代盲复原算法(IBD), 基于非负性和决策域的递归逆滤波器算法(NAR2R IF) ,基于高阶统计特性的最小 熵算法等最为典型。 (二)多通道二维图像盲复原 多通道二维图像盲复原,
5、 这类方法将数字通讯领域应用的一维多通道盲原分离算法扩展到二维情况并用于图像的盲恢复。这类算法中有两种代数方法, 一种是先辨识模糊函数, 再采用常规的恢复算法进行复原;另一种是直接对逆滤波器进行估计。此类算法的优点在于不需对初始图像进行估计, 也不存在稳定性和收敛性问题,对图像以及模糊函数的约束是松弛的,算法具有一般性。但是第1种算法要求采用复原算法具有收敛性;第2种算法对噪声敏感。 (三)空间改变的图像盲复原方法 在许多实际的应用中, 模糊往往是空间变化的,但由于处理工作的难度, 目前的研究较少,基本有相关转换恢复和直接法两类。 相关转换恢复的基本思想是区域分割, 即将整幅图像分为若干局部区
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 图像 恢复 算法 研究
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内