物流系统规划课件76519.pptx
《物流系统规划课件76519.pptx》由会员分享,可在线阅读,更多相关《物流系统规划课件76519.pptx(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、5.3 物流分配规划任务分配问题的数学模型用匈牙利法求解分配问题1一一.任务分配问题的数学模型任务分配问题的数学模型q在物流系统中或其它的管理工作中,管理人员经常面临的一个问题是:如何根据有限的资源(人力、物力、财力等),进行工作任务分配,以达到降低成本或提高经济效益的目的。如:v有A、B、C、D四门课程,上课的老师可以从甲、乙、丙、丁四名老师中选择,不同的老师上不同的课程,其费用是不同的,并且规定,每人只讲一门课程,每门课程只需要一人讲授。问:如何安排,才能使总的上课费用最低?v又如:运输任务的分配问题。有n条航线的运输任务指派给n艘船去完成,不同的船完成不同的航线其运输成本不同。要求每条船
2、完成一条航线,并且一条航线只能由一条船去完成。如何分配任务,才能使总的费用最小?q这类问题是常见的任务分配问题,也叫指派问题,它的任务是如何进行合理的任务分配,使总的费用最小。2一一.任务分配问题的数学模型任务分配问题的数学模型q以运输问题的n项任务由n个司机去完成的情况为例,有n个司机被分配完成n项运输任务,不同的司机完成任务某一项任务的费用都不一样。要求每个司机完成其中一项任务,每个任务只能由一名司机完成,如何分配任务,才能使总的费用最小?令:cij表示第i个司机完成第j项任务的运输成本(工作成本或工作时间等价值系数);xij表示第i个司机去完成第j项任务,其值为1或0。q当其值为1时表示
3、第i个司机被分配去完成第j项任务;q其值为0时,表示第i个司机不被分配去完成第j项任务。3一一.任务分配问题的数学模型任务分配问题的数学模型q任务分配问题属于整数规划问题,其变量xij的取值为整数,(本例为0或1)。q任务分配问题可以用一般的整数规划求解方法进行求解。但是,整数规划问题的求解也是非常困难的,到目前为止,还缺乏统一的求解方法。q本书采用匈牙利法求解任务分配问题。4二二.匈牙利法求解分配问题匈牙利法求解分配问题q可以证明,对于分配问题,在其费用矩阵Cij中,各行、各列均减去一个常数,Cij改变以后的最优解,仍为原问题的最优解。q利用这个性质,通过对Cij的行、列进行加减常数的计算,
4、把一些矩阵元素变为0,在Cij为0的元素上进行分解,就可得到原问题的最优解。q该方法应用了匈牙利数学家Konig矩阵性质定理,因此这种方法被称为匈牙利法。55.4 其他规划问题选址问题货物装配问题物流服务系统中的配置问题6一一.选址问题选址问题q物流调运规划问题,是一种有固定发点、固定收点和固定道路的运输规划问题。q还有一类运输问题,他的收货点和发货点是待定的,这就是选址问题。这类问题在物流系统规划中经常遇到。q选址问题要考虑多种因素,本节只讨论选址问题中的物流问题。分为两个问题:v单一地址选址方法;v图上作业法。71.单一地址选址方法单一地址选址方法 建立一个新工厂(或仓库),应合理选择厂址
5、(或库址)。所谓选址问题,就是从多个候选厂址中选取一个最优地址建厂,使物流费用达到最低。问题描述问题描述:假设厂址候选地点有s个,分别用D1,D2,Ds表示;原材料、燃料、零配件的供应地有m个,分别用A1,A2,Am表示,其供应量分别用P1,P2,Pm表示;产品销售地有n个,分别用B1,B2,Bn表示,其销售量分别为Q1,Q2,Qn表示。8设cij为供应地Ai到候选厂址Dj的单位运输成本;djk为候选厂址Dj到销售地Bk的单位运输成本;设选址变量为xj(j=1,2,s),其中:xj=0或1,1表示在Dj点建厂,0表示不在Dj点建厂。910q单一选址问题是一种线性规划问题,并且变量的取值为0或1
6、,属于整数规划问题。q单一地址的选址模型的求解方法比较简单从目标函数表达式的右边可以看出:通通过过计计算算模模型型中中括括号号内内的的算算式式值值,就就能能够够确确定定运运输输成成本本最最小小的的方方案。案。q当要选定的地址不是单一的,而是多个时,问题不再属于线性规划问题。112.2.图上作业法图上作业法 对于运输路线不含回路的选址问题,可用图上作业法求解。下面以一个实际例子来说明图上作业法的选址问题:例题8 假定有六个矿井产量分别为5000吨、6000吨、7000吨、2000吨、4000吨和3000吨,运输路线如图所示,这些矿石要经过加工后才能转运到其他地方。这些矿井之间道路不含回路,欲选择
7、一个矿井,在此矿井上建立一个加工厂,使各矿井到工厂的运输总费用最低。为了便于分析,用一个新的图来代替原图,新图圈内数字表示矿井编号,产量记在圈的旁边,道路交叉点看作产量为零的矿井,把那些只有一条道路连接的矿井称为端点。12q首先计算这些矿井的总产量,本例为27000吨。q然后分析各端点,都没有超过总产量的一半,因此把各端点的数量合并到前一站,即 和 的数量合并到;把的数量合并到;把 的数量合并到,如下图所示。3561100090007000q各端点都合并到前一站后,和变成了图中的端点。对它们进行分析其数量都不超过总产量的一半,所以他们不是最佳点。q再把它们合并到前一站,即把和的数量合并到。则
8、的数量为27000,超过总量的一半,所以是最佳点。q结论:加工厂应建在第5号矿井。13二二.货物装配货物装配 货物配装的目的是在车辆载重量为额定值的情况下,合理进行货物的安排,使车辆装载货物的价值最大(如:重量最大、运费最低等)。141.运用动态规划解装货问题运用动态规划解装货问题 设货车的载重量上限为G,用于运送n种不同的货物,货物的重量分别为W1,W2,.,Wn,每一种货物对应于一个价值系数,分别用P1,P2,.,Pn表示,它表示价值、运费或重量等。设Xk表示第k种货物的装入数量,货物配装问题的数学模型可以表示为:15q可以把装入一件货物作为一个阶段,把装货问题看作动态规划问题。一般情况下
9、,动态规划问题的求解过程是从最后一个阶段开始由后向前进行的。由于装入货物的先后次序不影响装货问题的最优解。所以我们的求解过程可以从第一阶段开始,由前向后逐步进行。q求解过程:(1)装入第1种货物X1件,其最大价值为 其中:X1表示第1种货物的装载数量;其取值范围:0X1 G/W1,方括号表示取整;P1:第1种货物的价值系数(重量、运费、价值等);f1(W):第一种货物的价值。16 (2)装入第2种货物X2件,其最大价值为 其中:X2表示第2种货物的装载数量;其取值范围:0X2 G/W2;P2:第2种货物的价值系数(重量、运费、价值等);:第一种货物的重量;:第一种货物的价值。(3)装入第3种货
10、物X3件,其最大价值为 其中:X3表示第3种货物的装载数量;其取值范围:0X3 G/W3;P3:第3种货物的价值系数;17(n)装入第n种货物Xn件,其最大价值为 其中:Xn表示第n种货物的装载数量;其取值范围:0Xn G/Wn;Pn:第n种货物的价值系数;18例题9 载重量为8t的载重汽车,运输4种机电产品,产品重量分别为3吨、3吨、4吨、5吨,试问如何配装才能充分利用货车的运载能力?解:第一步,按照前面的公式,分成四个阶段计算每一阶段的价值。第一步,按照前面的公式,分成四个阶段计算每一阶段的价值。计算结果以表格表示如下:货物装配例题19载重量件数价值(重量)载重量第2种货物的件数第1种货物
11、的重量价值计算价值Max20载重量第3种货物的件数第1、2种货物的重量价值计算价值Max21第第二二步步:寻寻找找最最优优方方案案。寻找最优解方案的次序与计算顺序相反,由第4阶段向第1阶段进行。从价值最大的装载情况,逐步向前寻找最优方案。(1)在第4阶段计算表中,在载重量为8时,价值(本例为载重量)最大值f4(W)8,对应两组数据(加*号的数据):1)X40;2)X41;先看X41时的情况:当X41时,即第4种货物装入1件(5吨),表中第3列数字表示其余种类货物的装载量。当当X41时,其他时,其他3种货物装载量为种货物装载量为3吨吨;(2)按相反方向,在在第第3阶阶段段计计算算表表中中,查查W
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物流 系统 规划 课件 76519
限制150内