2023年《找次品》教学反思.docx
《2023年《找次品》教学反思.docx》由会员分享,可在线阅读,更多相关《2023年《找次品》教学反思.docx(171页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2023年找次品教学反思【10篇】找次品教学反思1 找次品是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观看、猜想、试验等方式感受解决问题策略的多样性,在此根底上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培育学生的应用意识和解决实际问题的力量。 对传统设计思想的分析 传统设计一般是首先找5个零件中的次品(目标:在熟悉*衡与不*衡两种可能结果的根底上引导学生画框图,经受规律推理的过程);再找9个零件(目标:找到最优称法,形成猜测);然后称8个,27个,探究规律;最终称100个、243个零件(目标:连续学习化归方法,找到零件个数与称的次
2、数之间的关系)。这种设计从过程来看表达了操作 -猜想-验证 - 归纳 -应用的教学思路,它的重点放在学生优化方案的比拟上。这样设计有两个弊端。问题一:按这种单刀直入式进展讨论,因学生的学问和方法储藏不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维简单断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣缺乏,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜测最正确策略:分三堆,每堆尽量同样多的规律,学生不简单找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思索过程,另一方面也影响了学生对最正确策略的关注。如何通过优化策略的形成,提升学生
3、的思维品质,高教师进展了如下的探究。 探究适合学情的实践尝试 1、巧:嬉戏互动做铺垫-奇妙渗透优化思想 在学生的猜数过程中,高教师总让学生处于最不利的境况,除非他选择了最正确策略,否则猜的次数总是最多。高教师心中想的数不是固定的,是依据学生的猜在不断的变化,也就是说,一开头他心中并没有想好一个详细的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生熟悉到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数嬉戏中感悟快速猜数的方法与策略。 2、趣:沟通策略多样化-引出优化方法 有效的数学学习活动不能单纯地依靠仿照与记忆,动手实践、自主探究与合作沟通是学生学习数学的重
4、要方式。在这一环节中,让学生动手动脑,亲身经受分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天*来进展实践探究,学生特别感兴趣。高教师放手让学生探究3个、5个测品中找一个次品,表达策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不简单理解,教学时我依据学生的答复同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下肯定的根底。 3、实:打破常规设悬念-激起优化需求 假如说数学思想方法是可以传授的话,那教师确定是把其中富有思索意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想肯定要让学生经受了自主体验和反思顿悟
5、的过程。本节课高教师打破常规,让学生大胆猜想:假如有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么方法?(把数据变小些,并举例讨论。)激起学生优化需求,学生也从中熟悉到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。 4、准:找准盲区巧点拨-形成优化策略 学生挑战在100个中找次品时,高教师准时点拨引导-当遇到一个问题时,我们迈出第一步至关重要。结合课前嬉戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的规划。当消失分2份和3份的比照分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分
6、成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。 探究实践后的启发与思索 启发一:进展才是硬道理。在备这课时,高教师也考虑到用天*来操作演示,但由于现场条件的限制-没有预备现成的天*;同时又考虑到学生用天*来称在操作上也会很麻烦,以前对天*的构造、用法以及*衡与不*衡所反映的信息都已经有了很好的把握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天*带进课堂,而是让学生用自己的肢体演示代替天*操作。只要能让学生得到进展,删繁就简是很划算的。 启发二:万丈高楼*地起。解决再难的问题,丰实根底是至关重要的。为了让学生的思维顺当由方法的多样性转向最优化,
7、高教师在教材例1之前增设在3个中找次品的环节,目的有二: 1、走实第一步。在这一环节中让学生重温天*的构造和用法,收集*衡与不*衡所反映的信息,为后续讨论储藏能量。 2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从仿照开头的习惯。要想学生的思维提升的更高,必需把思维的根底打得最牢。 思索一:经受了本堂课的预设与生成后,对于本课这样有肯定难度的教学内容,教到怎样一个度是最适宜的? 思索二:这节课中,对于最正确策略的成因还有没有更好的、更有说服力的解释方法呢? 古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道
8、什么。从高教师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。 找次品教学反思2 找次品是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观看、猜想、试验等方式感受解决问题策略的多样性,在此根底上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培育学生的应用意识和解决实际问题的力量。 对传统设计思想的分析 传统设计一般是首先找5个零件中的次品(目标:在熟悉*衡与不*衡两种可能结果的根底上引导学生画框图,经受规律推理的过程);再找9个零件(目标:找到最优称法,形成猜测);然后称8个,27个,探究规律;最终
9、称100个、243个零件(目标:连续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看表达了操作 -猜想-验证 - 归纳 -应用的教学思路,它的重点放在学生优化方案的比拟上。这样设计有两个弊端。问题一:按这种单刀直入式进展讨论,因学生的学问和方法储藏不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维简单断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣缺乏,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜测最正确策略:分三堆,每堆尽量同样多的规律,学生不简单找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思索过程,另
10、一方面也影响了学生对最正确策略的关注。如何通过优化策略的形成,提升学生的思维品质,高教师进展了如下的探究。 探究适合学情的实践尝试 1、巧:嬉戏互动做铺垫-奇妙渗透优化思想 在学生的猜数过程中,高教师总让学生处于最不利的境况,除非他选择了最正确策略,否则猜的次数总是最多。高教师心中想的数不是固定的,是依据学生的猜在不断的变化,也就是说,一开头他心中并没有想好一个详细的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生熟悉到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数嬉戏中感悟快速猜数的方法与策略。 2、趣:沟通策略多样化-引出优化方法 有效的数学学习活动不
11、能单纯地依靠仿照与记忆,动手实践、自主探究与合作沟通是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经受分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天*来进展实践探究,学生特别感兴趣。高教师放手让学生探究3个、5个测品中找一个次品,表达策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不简单理解,教学时我依据学生的答复同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下肯定的根底。 3、实:打破常规设悬念-激起优化需求 假如说数学思想方法是可以传授的话,那教师确定是把其中富有思索意义的东西机械化了,这样就失
12、去了它应有的价值。所以渗透优化思想肯定要让学生经受了自主体验和反思顿悟的过程。本节课高教师打破常规,让学生大胆猜想:假如有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么方法?(把数据变小些,并举例讨论。)激起学生优化需求,学生也从中熟悉到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。 4、准:找准盲区巧点拨-形成优化策略 学生挑战在100个中找次品时,高教师准时点拨引导-当遇到一个问题时,我们迈出第一步至关重要。结合课前嬉戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的规划。当消失分2份和3份的比照分析时,我又适时提问
13、导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。 探究实践后的启发与思索 启发一:进展才是硬道理。在备这课时,高教师也考虑到用天*来操作演示,但由于现场条件的限制-没有预备现成的天*;同时又考虑到学生用天*来称在操作上也会很麻烦,以前对天*的构造、用法以及*衡与不*衡所反映的信息都已经有了很好的把握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天*带进课堂,而是让学生用自己的肢体演示代替天*操作。只要能让学生得到进展,删繁就简是很划算的。 启发二:万丈高楼*地起。解决再难的问题
14、,丰实根底是至关重要的。为了让学生的思维顺当由方法的多样性转向最优化,高教师在教材例1之前增设在3个中找次品的环节,目的有二: 1、走实第一步。在这一环节中让学生重温天*的构造和用法,收集*衡与不*衡所反映的信息,为后续讨论储藏能量。 2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从仿照开头的习惯。要想学生的思维提升的更高,必需把思维的根底打得最牢。 思索一:经受了本堂课的预设与生成后,对于本课这样有肯定难度的教学内容,教到怎样一个度是最适宜的? 思索二:这节课中,对于最正确策略的成因还有没有更好的、更有说服力的解释方法呢? 古希腊数学家毕
15、达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高教师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。 找次品教学反思3 找次品是人教版小学数学五年级下册第七单元数学广角的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培育学生的推理力量。上这样一课,是对自己的一次挑战。备课初衷我认为这一课,是在学习新课标后:从“双基”到“四基”,从“两能”到“四能”,我的新理念能得到充分的应用的一课。对根本思想的熟悉,这里的思想方法,不是前几年的教学试验“数学思想方法”这里指的是支撑数学科学进展的思想,核心在于数学推理、数学建模
16、。如何让学生获得数学思想,关键要让学生经受概念的抽象过程。而找次品一课恰恰能把这一理念应用得淋漓尽致。 一、猜测验证是一种重要的数学思想方法 正如荷兰数学教育家弗赖登塔尔所说“真正的数学家经常凭借数学的直觉思维做出各种猜测,然后加以证明。”因此,小学数学教学中我们要重视猜测、验证思想方法的渗透,以增加学生主动探究,猎取数学学问的力量,促进学生创新力量的进展。本节课我就让学生经受了“探究猜测验证推理归纳”的过程。从3瓶探究中建立找次品的根本模型,然后通过自主探究获得8、9瓶称的次数最少的方案,进而猜想最简方法,为了验证这一猜测,就必需再用一个例子去试验,然后归纳得出结论。学生通过经受学问的形成过
17、程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法猜测验证,提高了主动探究、猎取学问的力量,增加了学好数学的信念。 二、推理力量的培育 新课标指出:推理力量的进展应贯穿于整个数学学习过程中。推理是数学的根本思维方式,也是人们学习和生活中常常使用的思维方式。推理包括合情推理和演绎推理在本节课教学中两者都有详细表达。在学生独立探究、观看后发觉,在找次品次数最少的这些方案中都把待测物品分成3份,于是得出结论,要使找次品次数最少,就要将待测物品分成3份。这一过程属于合情推理。而在对总结的结论用8瓶和9瓶进展小组验证这一环节中,又恰恰运用了演绎推理。两种推理功能不同,却相辅相成:合情推理
18、用于探究思路,发觉结论;演绎推理用于证明结论。学生在尝试总结运用找次品最优策略的过程中进展了推理力量。 三、根本活动阅历的熟悉 对学生而言,所谓数学的根本活动阅历是指:围绕特定的数学课程教学目标,学生经受了与数学课程教学内容亲密相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。根本活动阅历是学生的亲身经受。让学生获得根本活动阅历,本质上让学生经受数学活动直观,但必需建立在学生亲身经受和感知的根底之上。本节课中我首先让学生独立动手实践、集体探究等。但由于时间关系,学生活动及争论的时间偏少,但我和学生的心情一样开心,由于学生有了探究的欲望和肯定的解决问题的力量,这也是我最大的收
19、获。 四、存在的缺乏 这节课也存在缺乏,由于是40分钟课,组织学生动手操作与合作沟通不够充分:假如是60分钟课,在独立探究和小组验证活动中我会增加23分钟以便学生充分感知查找最优策略的必要性;并且在独立讨论后我会用46分钟,让学生逐一说明10个小球、11个小球找到次品的方法,这样以学带教,从而实现“教师为了不教”的教学境地,到达促进学生自主学习的根本目标。 总之,这次活动给我了一次很好的熬炼、成长的时机,使我找到了自身努力地方向!我深信,只要我们摸清学生的学情,找到他们的现有学问起点,不断转变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长铺垫出一条坚实之路! 找次品教学反思4 找次品教
20、学后记本单元的数学与生活中有一节内容是“找次品”,认真讨论教材,有些无从下手的感觉。在教研活动时,与教师们沟通、协商,确定低起点、小跨度、多操作、重发觉,在教学中重在引导学生在探究中发觉。课后回忆教学过程,本节课做到了自主探究、注意数学化,因此学生理解较好,兴趣也较浓。 首先注意学生的自主探究。其实要想快捷精确地解决此类型问题,作为教师的我们可以用五分钟左右的时间向学生灌输结论性的解题方法:即每次尽量将物品*均分成3份(如不能*均分时,也应使每份的相差数不大于1),然后用大量时间让学生进展稳固练习,强化这种方法。但这样的教学虽然短时高效,但却只重结论,无视了学生探究精神的培育。为了让学生在积极
21、思索、大胆尝试、主动探究中,猎取胜利并体验胜利的喜悦,我赐予学生充分的时间去独立探究、尽量地显现他们的不同称法,最终通过比照发觉结论。首先我安排了从28个零件中找次品,实行学生动手实践、小组争论、猜测探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作沟通的学习方式。并要求学生归纳出解决这类问题的.最优策略,从而让学生经受由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发觉把零件分成3份称的方法最好,进一步熟悉“找次品”这类问题,探究解决问题的最优方法。 其次重视“数学化”。学生理解了找次品的方法,但是用语言描述找
22、次品过程,表达起来就非常麻烦,尤其是需要需要屡次称时。教材中是采纳绘制简洁天*示意图的方式表示找的过程。可是随着物品个数的增加,这种方式虽然形象直观,但究竟不便利。于是,我让学生想一想:有没有更加简洁的记录方式?孩子们经过探讨,想到了不同的方式:用简洁文字加箭头的方式,用树形图,就像原来学习的数的组成一样,每称一次,接着向下画一次。这种树形图汲取了箭头示意图的优点,使图示更具有数学味,也更简洁既精确、又形象。 一点思索:当所分物品是偶数个(如4、6、8)时,我发觉学生更亲睐于将其*均分成2份。这种分法在总数是4和6时,并不影响最少次数,但假如是8个物品时,假如*均分成2份,则至少需要3次,而假
23、如分成3份(3、3、2),则只需要2次就可以找出次品。所以,要引导学生发觉规律:应尽量将物品分成3份,能够更好找出次品显得有些牵强。在练习中,有局部学生照旧痴迷于*均分成2份的方法,在练习中就有局部学生将10分成5和5,用这种分法同样也能做出正确结果,这时教师该怎样评价呢? 找次品教学反思5 “找次品”是五年级下学期数学广角中安排的教学内容,其目的是让学生通过观看、猜想、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培育学生观看、分析、推理以及解决问题的力量,同时也让学生感受到数学与日常生活的亲密联系。 我首先安排了从3个中找次品,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 找次品 2023 次品 教学 反思
限制150内