江苏省无锡市宜兴市桃溪中学2023学年数学九年级第一学期期末复习检测试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《江苏省无锡市宜兴市桃溪中学2023学年数学九年级第一学期期末复习检测试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市宜兴市桃溪中学2023学年数学九年级第一学期期末复习检测试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023学年九年级上学期数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1方程的解是( )A0B3C0或3D0或32一个高为3 cm的圆锥的底面周长为8 cm,则这个圆锥的母线长度为( )A3 cmB4 cmC5 cmD5 cm3若,则等于( )ABCD4如图,在中,点为上任意一点,连结,以,为邻边作平行四边
2、形,连结,则的最小值为( )ABCD5抛物线y=2x2,y=2x2,y=2x2+1共有的性质是()A开口向上B对称轴都是y轴C都有最高点D顶点都是原点6如图,O的弦AB=16,OMAB于M,且OM=6,则O的半径等于A8B6C10D207如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且OCD60,设点A的坐标为(m,0),若以A为圆心,2为半径的A与直线l相交于M、N两点,当MN=时,m的值为( )ABC或D或8函数y= (k0),当x0时,该函数图像在A第一象限B第二象限C第三象限D第四象限9下列所给的事件中,是必然事件的是( )A一个标准大气压下,水加热到时会
3、沸腾B买一注福利彩票会中奖C连续4次投掷质地均匀的硬币,4次均硬币正面朝上D2020年的春节小长假辛集将下雪10如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD11已知函数的图象过点,则该函数的图象必在( )A第二、三象限B第二、四象限C第一、三象限D第三、四象限12设A(2,y1),B(1,y2),C(2,y3)是抛物线y=(x+1)2+a上的三点,则y1,y2,y3的大小关系为()Ay1y2y3By1y3y2Cy3y2y1Dy3y1y2二、填空题(每题4分,共24分)13将抛物线y=2x2+1向左平移三个单位,再向下平移两个单
4、位得到抛物线_;14在平面直角坐标系中,若点与点关于原点对称,则_15已知三角形的两边分别是3和4,第三边的数值是方程x29x+140的根,则这个三角形的周长为_16如图,O的半径为4,点B是圆上一动点,点A为O内一定点,OA4,将AB绕A点顺时针方向旋转120到AC,以AB、BC为邻边作ABCD,对角线AC、BD交于E,则OE的最大值为_17如果3a4b(a、b都不等于零),那么_18已知二次函数yx2bx(b为常数),当2x5时,函数y有最小值1,则b的值为_三、解答题(共78分)19(8分)如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AEBF
5、CGDH.(1)求证:四边形EFGH是矩形;(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DGAC,OF2cm,求矩形ABCD的面积20(8分)如图,在边长为1的正方形网格中,ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(4,1),点B的坐标为(1,1)(1)画出ABC绕点B逆时针旋转90后得到的A1BC1;(1)画出ABC关于原点O对称的A1B1C121(8分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)销售单价m(元/件)(
6、1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?22(10分)如图,内接于,是的弦,与相交于点,平分,过点作,分别交,的延长线于点、,连接.(1)求证:是的切线;(2)求证:.23(10分)如图,在平面直角坐标系中,已知RtAOB的两直角边OA、OB分别在x轴、y轴的正半轴上(OAOB)且OA、OB的长分别是一元二次方程x214x+480的两个根,线段AB的垂直平分线CD交AB于点C,交x轴于点D,点P是直线AB上一个动点,点Q是直线CD上一个动点
7、(1)求线段AB的长度:(2)过动点P作PFOA于F,PEOB于E,点P在移动过程中,线段EF的长度也在改变,请求出线段EF的最小值:(3)在坐标平面内是否存在一点M,使以点C、P、Q、M为顶点的四边形是正方形,且该正方形的边长为AB长?若存在,请直接写出点M的坐标:若不存在,请说明理由24(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DEDB,求证:(1)BCEADE;(2)ABBC=BDBE25(12分)如图,在ABCD中,点E在BC边上,点F在DC的延长线上,且DAE=F(1) 求证:ABEECF; (2) 若AB=5,AD=8,BE=2,求FC的
8、长26如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?参考答案一、选择题(每题4分,共48分)1、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.2、C【分析】由底面圆的周长公式算出底面半径,圆锥的正视图是以母线长为腰,底面圆直径为底的等腰三角形,高、底面半径和母线长三边构成直角三角形,再用勾股定理算出母线长即可【详解】解:由圆的周长公式得 =4由勾股定理 =5故选:C【点睛】本题考查了圆锥的周长
9、公式,圆锥的正视图勾股定理等知识点3、B【分析】首先根据已知等式得出,然后代入所求式子,即可得解.【详解】故答案为B.【点睛】此题主要考查利用已知代数式化为含有同一未知数的式子,即可解题.4、A【分析】设PQ与AC交于点O,作于,首先求出,当P与重合时,PQ的值最小,PQ的最小值=2【详解】设与AC交于点O,作于,如图所示:在RtABC中,BAC=90,ACB=45,四边形PAQC是平行四边形,ACB=45,当与重合时,OP的值最小,则PQ的值最小,PQ的最小值故选:A【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键5、B【详解】
10、(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1)故选B6、C【分析】连接OA,即可证得OMA是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长,即O的半径【详解】连接OA,M是AB的中点,OMAB,且AM=8,在RtOAM中,OA=1故选C【点睛】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明OAM是直角三角形是解题的关键7、C【分析】根据题意先求得、的长,分两种情况讨论:当点在直线l的左侧时,利用勾股定理求得
11、,利用锐角三角函数求得,即可求得答案;当点在直线l的右侧时,同理可求得答案.【详解】令,则,点D 的坐标为,OCD60,分两种情况讨论:当点在直线l的左侧时:如图,过A作AGCD于G,MN=,在中,ACG60,当点在直线l的右侧时:如图,过A作AG直线l于G,MN=,在中,ACG60,综上:m的值为:或.故选:C【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,锐角三角函数,分类讨论、构建合适的辅助线是解题的关键.8、B【解析】首先根据反比例函数的比例系数确定图象的大体位置,然后根据自变量的取值范围确定具体位置【详解】比例系数k0,其图象位于二、四象限,x0时,函数图像在一、三象限;当k
12、0时,函数图像在二、四象限.根据题意可得:k=2.考点:反比例函数的性质12、A【分析】根据函数解析式画出抛物线以及在图象上标出三个点的位置,根据二次函数图像的增减性即可得解【详解】函数的解析式是,如图:对称轴是点关于对称轴的点是,那么点、都在对称轴的右边,而对称轴右边随的增大而减小,于是故选:A【点睛】本题考查了二次函数图象的对称性以及增减性,画出函数图像是解题的关键,根据题意画出函数图象能够更直观的解答二、填空题(每题4分,共24分)13、【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 无锡市 宜兴市 中学 2023 学年 数学 九年级 第一 学期 期末 复习 检测 试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内