初二数学一次函数知识点总结全面(共12页).doc
《初二数学一次函数知识点总结全面(共12页).doc》由会员分享,可在线阅读,更多相关《初二数学一次函数知识点总结全面(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一次函数知识点总结基本概念1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。例题:在匀速运动公式中,表示速度,表示时间,表示在时间内所走的路程,则变量是_,常量是_。在圆的周长公式C=2r中,变量是_,常量是_.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数(1)y=x (2)y=2x-1 (3)y= (4)y=2-1
2、-3x (5)y=x2-1中,是一次函数的有( )(A)4个 (B)3个 (C)2个 (D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。例题:下列函数中,自变量x的取值范围是x2的是( )Ay= By= Cy= Dy=函数中自变量x的取值范围是_.已知函数,当时,y的取值范围是 (
3、)A. B. C. D.5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之
4、间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质一般地,形如y=kx(k是常数,k0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) k不为零 x指数为1 b取零当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大
5、;k0时,将直线y=kx的图象向上平移b个单位;当b0b0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k0时,向上平移;当b0或ax+b0时,直线必通过第一、三象限,y随x的增大而增大; 当k0,b0, 这时此函数的图象经过第一、二、三象限; 当 k0,b0, 这时此函数的图象经过第一、三、四象限; 当 k0, 这时此函数的图象经过第一、二、四象限; 当 k0,b0时,直线必通过第一、二象限; 当b0时,直线只通过第一、三象限,不会通过第二、四象限。当k0时,直线只通过第二、四象限,不会通过第一、三象限。 4、特殊位置关系: 当中两直线平行时,其
6、函数解析式中K值(即一次项系数)相等 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) ) 点斜式y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点)两点式(y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y3)两点) 截距式(a、b分别为直线在x、y轴上的截距)实用型 (由实际问题来做)用公式1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:(x1-x2)2+(y1
7、-y2)2 (注:根号下(x1-x2)与(y1-y2)的平方和) 5.求两个一次函数式图像交点坐标:解两函数式 两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标 6.求任意2点所连线段的中点坐标:(x1+x2)/2,(y1+y2)/2 7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0) x y +, +(正,正
8、)在第一象限 - ,+ (负,正)在第二象限 - ,- (负,负)在第三象限 + ,- (正,负)在第四象限 8.若两条直线y1=k1x+b1y2=k2x+b2,那么k1=k2,b1b2 9.如两条直线y1=k1x+b1y2=k2x+b2,那么k1k2=-1 10. y=k(x-n)+b就是向右平移n个单位 y=k(x+n)+b就是向左平移n个单位 一次函数的平移口诀:右减左加(对于y=kx+b来说,只改变b) y=kx+b+n就是向上平移n个单位 y=kx+b-n就是向下平移n个单位 口诀:上加下减(对于y=kx+b来说,只改变b)相关应用 生活中的应用1.当时间t一定,距离s是速度v的一次
9、函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数) 数学问题一、确定字母系数的取值范围 例1 已知正比例函数 ,则当k0时,y随x的增大而减小。 解:根据正比例函数的定义和性质,得 且my2,则x1与x2的大小关系是( ) A. x1x2 B. x10,且y1y2。根据“当k0时,y随x的增大而增大”,得x1x2。故选A。 三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb0,且y随x的增大而减小,则
10、此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb0,知k、b同号。因为y随x的增大而减小,所以k0。所以b30时,Y1Y2 当X30时,Y10,则可以列方程组 -2k+b=-11 6k+b=9 解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x6 (2)若k0,则y随x的增大而增大;若k0,则y随x的增大而减小。 综合测试一、选择题: 1. 若正比例函数y=kx的图象经过一、三象限,则k的取值范围是( ) A.k0 B.k0 D.k为任意值 2. 一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度y(cm)与燃烧时间x(小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 一次 函数 知识点 总结 全面 12
限制150内