《2023届广东省华师附中新世界校初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省华师附中新世界校初中数学毕业考试模拟冲刺卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列方程有实数根的是( )ABCx+2x1=0D2在平面直角坐标系中,把直线yx向左平移一个单位长度后,所得直线的解析式为()Ayx1 Byx1 Cyx Dyx23已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象
2、可能是( )ABCD4若关于x的方程 是一元二次方程,则m的取值范围是( )A.B.CD.5下列各式计算正确的是()Aa4a3=a12B3a4a=12aC(a3)4=a12Da12a3=a46如图,ABCD,FEDB,垂足为E,150,则2的度数是( )A60B50C40D307一元二次方程x25x6=0的根是()Ax1=1,x2=6Bx1=2,x2=3Cx1=1,x2=6Dx1=1,x2=68在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上,已知正方
3、形A1B1C1D1的边长为l,B1C1O=60,B1C1B2C2B3C3,则正方形A2017B2017C2017 D2017的边长是()A()2016 B()2017 C()2016 D()20179若代数式有意义,则实数x的取值范围是()Ax0Bx0Cx0D任意实数10如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶设x(s)后两车相距y (m),y与x的函数关系如图2所示有以下结论:图1中a的值为500;乙车的速度为35 m/s;图1中线段EF应表示为;图2中函数图象与x轴交点的横坐标
4、为1其中所有的正确结论是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,为的直径,与相切于点,弦若,则_.12某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_人13如果实数x、y满足方程组,求代数式(+2)14如图,矩形ABCD中,如果以AB为直径的O沿着滚动一周,点恰好与点C重合,那么 的值等于_(结果保留两位小数)15如图,平行线AB、
5、CD被直线EF所截,若2=130,则1=_16如图,在平面直角坐标系中,已知A(2,1),B(1,0),将线段AB绕着点B顺时针旋转90得到线段BA,则A的坐标为_17如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB6cm,BC8cm,则EF_cm三、解答题(共7小题,满分69分)18(10分)如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE,已知BAC=30,EFAB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形19(5分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利
6、润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201520(8分)如图,在矩形ABCD中,E是BC边上的点,垂足为F.(1)求证:;(2)如果,求的余切值.21(10分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上(I)AC的长等于_(II)若AC边与网格线的交点为P,请找出两条过点P的
7、直线来三等分ABC的面积请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_(不要求证明)22(10分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径23(12分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 三角形;
8、(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由24(14分)如图1,已知ABC是等腰直角三角形,BAC90,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG试猜想线段BG和AE的数量关系是_;将正方形DEFG绕点D逆时针方向旋转(0360),判断(1)中的结论是否仍然成立?请利用图2证明你的结论;若BCDE4,当AE取最大值时,求AF的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析:根据
9、方程解的定义,一一判断即可解决问题;详解:Ax40,x4+2=0无解;故本选项不符合题意; B0,=1无解,故本选项不符合题意; Cx2+2x1=0,=8=4=120,方程有实数根,故本选项符合题意; D解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意 故选C点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.3、B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据
10、交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: 抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b0,ac0.4、A【解析】根据一元二次方程的定义可得m10,再解即可【详解】由题意得:m10,解得:m1,故选A【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程5、
11、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D【详解】Aa4a3=a7,故A错误;B3a4a=12a2,故B错误;C(a3)4=a12,故C正确;Da12a3=a9,故D错误故选C【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键6、C【解析】试题分析:FEDB,DEF=90,1=50,D=9050=40,ABCD,2=D=40故选C考点:平行线的性质7、D【解析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1”来解题【详解】x2-5x-6=1(x-6)(x
12、+1)=1x1=-1,x2=6故选D【点睛】本题考查了一元二次方程的解法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法8、C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案解:如图所示:正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3D1E1=B2E2,D2E3=B3E4,D1C1E1=C2B2E2=C3B3E4=30,D1E1=C1D1sin30=,则B2C2=()1,同理可得:B3C3=()2,故正方形AnBnCnDn的边长是:()n1则正方形
13、A2017B2017C2017D2017的边长是:()2故选C“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键9、C【解析】根据分式和二次根式有意义的条件进行解答【详解】 解:依题意得:x21且x1解得x1故选C【点睛】考查了分式有意义的条件和二次根式有意义的条件解题时,注意分母不等于零且被开方数是非负数10、A【解析】分析:根据图象2得出结论; 根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; 根据图1,线段的和与差可表示EF的长;利用待定系数法求直线的解析式,令y=0可得结论.详解:y是两车的距离,所以根据图2可知:图1中
14、a的值为500,此选项正确;由题意得:7520+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解析
15、】利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,然后根据等腰三角形的性质求出的度数即可【详解】与相切于点,ACAB,故答案为1【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系12、16000【解析】用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果【详解】A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000=16000,故答案为16000.【点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得
16、到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据13、1【解析】解:原式=xy+2x+2y,方程组:,解得:,当x=3,y=1时,原式=3+62=1故答案为1点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键14、3.1【解析】分析:由题意可知:BC的长就是O的周长,列式即可得出结论详解:以AB为直径的O沿着滚动一周,点恰好与点C重合,BC的长就是O的周长,AB=BC,=3.1故答案为3.1点睛:本题考查了圆的周长以及线段的比解题的关键是弄懂BC的长就是O的周长15、50【解析】利用平行线的性质推出EFC=2=130,再根据邻补角的性质即可解决问题.【详解】ABC
17、D,EFC=2=130,1=180-EFC=50,故答案为50【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题16、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90,ABC+ABC=90,BAC+ABC=90,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=1+1=2,AC=B
18、C=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形17、2.1【解析】根据勾股定理求出AC,根据矩形性质得出ABC=90,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可【详解】四边形ABCD是矩形,ABC=90,BD=AC,BO=OD,AB=6cm,BC=8cm,由勾股定理得:BD=AC=10(cm),DO=1cm,点E、F分别是AO、AD的中点,EF=OD=2.1cm,故答案为2.1【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键
19、.三、解答题(共7小题,满分69分)18、证明见解析【解析】(1)一方面RtABC中,由BAC=30可以得到AB=2BC,另一方面ABE是等边三角形,EFAB,由此得到AE=2AF,并且AB=2AF,从而可证明AFEBCA,再根据全等三角形的性质即可证明AC=EF(2)根据(1)知道EF=AC,而ACD是等边三角形,所以EF=AC=AD,并且ADAB,而EFAB,由此得到EFAD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形【详解】证明:(1)RtABC中,BAC=30,AB=2BC又ABE是等边三角形,EFAB,AB=2AFAF=BC在RtAFE和RtBCA中,AF=BC,A
20、E=BA,AFEBCA(HL)AC=EF(2)ACD是等边三角形,DAC=60,AC=ADDAB=DAC+BAC=90EFADAC=EF,AC=AD,EF=AD四边形ADFE是平行四边形考点:1全等三角形的判定与性质;2等边三角形的性质;3平行四边形的判定19、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B
21、种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利
22、润为9625元 20、(1)见解析;(2).【解析】(1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【详解】解:(1)证明:四边形是矩形,在和中,;(2),设,.【点睛】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.21、 作abcd,可得交点P与P 【解析】(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)AC=,故答案为:;(II)如图直线l1,直线l2即为所求;理由:abcd,且a与b,b与c,c与d之间的距离相等,CP=P
23、P=PA,SBCP=SABP=SABC故答案为作abcd,可得交点P与P【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22、(1)详见解析;(2)这个圆形截面的半径是5 cm.【解析】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心作半径,交于点,设半径为,得出、的长,在中,根据勾股定理求出这个圆形截面的半径.【详解】(1)如图,作线段AB的垂直平分线l,与弧AB交于点C,作线段AC的垂直平分线l与直线l交于点O,点O即为所求作的圆心(2)如图,过圆心O作半径COAB,交AB于点D,设半径为r,则ADAB4,
24、ODr2,在RtAOD中,r242(r2)2,解得r5,答:这个圆形截面的半径是5 cm.【点睛】此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.23、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为24、(1)BG=AE(2)成立BG=AE证明见解析.AF=【解析】(1)由等腰直角三角形的性质及正方形的性质就
25、可以得出ADEBDG就可以得出结论;(2)如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出ADEBDG就可以得出结论;由可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论【详解】(1)BG=AE.理由:如图1,ABC是等腰直角三角形,BAC=90,点D是BC的中点,ADBC,BD=CD,ADB=ADC=90.四边形DEFG是正方形,DE=DG.在BDG和ADE中,BD=AD,BDG=ADE,GD=ED,ADEBDG(SAS),BG=AE.故答案为BG=AE;(2)成立BG=AE.理由:如图2,连接AD,在RtBAC中,D为斜边BC中点,AD=BD,ADBC,ADG+GDB=90.四边形EFGD为正方形,DE=DG,且GDE=90,ADG+ADE=90,BDG=ADE.在BDG和ADE中,BD=AD,BDG=ADE,GD=ED,BDGADE(SAS),BG=AE;BG=AE,当BG取得最大值时,AE取得最大值如图3,当旋转角为270时,BG=AE.BC=DE=4,BG=2+4=6.AE=6.在RtAEF中,由勾股定理,得AF= =,AF=2 .【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
限制150内