《2023届广州市重点中学中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广州市重点中学中考三模数学试题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为(
2、)A20B30C40D502如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D603下列说法不正确的是( )A选举中,人们通常最关心的数据是众数B从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D数据3,5,4,1,2的中位数是44我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD5下列实数0,其中,无理数共有()A1个B2个C3个
3、D4个6下列计算正确的是( )A(a3)2a26a9B(a3)(a3)a29C(ab)2a2b2D(ab)2a2a27如图,四边形ABCD是O的内接四边形,O的半径为6,ADC=60,则劣弧AC的长为()A2B4C5D68二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过()A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限9如图1,等边ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形设点I为对称轴的交点,如图2,将这个图形的顶点A与等边DEF的顶点
4、D重合,且ABDE,DE=2,将它沿等边DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A18B27CD4510九章算术是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等交易其一,金轻十三两问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11将一个含45角
5、的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_12二次函数y=ax2+bx+c(a、b、c是常数,且a0)的图象如图所示,则a+b+2c_0(填“”“=”或“”)13如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是 14如图,矩形ABCD中,BC6,CD3,以AD为直径的半圆O与BC相切于点E,连接BD则阴影部分的面积为_(结果保留)15关于x
6、的一元二次方程x2+4xk=0有实数根,则k的取值范围是_16某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为_三、解答题(共8题,共72分)17(8分)如图,已知O是以AB为直径的ABC的外接圆,过点A作O的切线交OC的延长线于点D,交BC的延长线于点E(1)求证:DAC=DCE;(2)若AB=2,sinD=,求AE的长18(8分)如图在由边长为1个单位长度的小正方形组成的1212网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90画出旋转后的图
7、形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点19(8分)如图,在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CFBC,求证:四边形OCFE是平行四边形20(8分)化简:(x-1- ).21(8分)(1)计算:14+sin61+()2()1(2)解不等式组,并把它的解集在数轴上表示出来22(10分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修
8、一门课程,则他们两人恰好选修同一门课程的概率为多少?23(12分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率(请结合树状图或列表解答)24“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总
9、成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得: ,计算得出:n=20,故选A.点睛:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.2、D
10、【解析】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边3、D【解析】试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确
11、;D、数据3,5,4,1,2由小到大排列为2,1,3,4,5,所以中位数是3,所以D选项的说法错误故选D考点:随机事件发生的可能性(概率)的计算方法4、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故
12、选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答5、B【解析】根据无理数的概念可判断出无理数的个数【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数6、B【解析】利用完全平方公式及平方差公式计算即可【详解】解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是
13、解题的关键7、B【解析】连接OA、OC,然后根据圆周角定理求得AOC的度数,最后根据弧长公式求解【详解】连接OA、OC,ADC=60,AOC=2ADC=120,则劣弧AC的长为: =4故选B【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 8、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一
14、、二、三象限”是解题的关键9、B【解析】先判断出莱洛三角形等边DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.【详解】如图1中,等边DEF的边长为2,等边ABC的边长为3,S矩形AGHF=23=6,由题意知,ABDE,AGAF,BAG=120,S扇形BAG=3,图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6+3)=27;故选B【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边DEF扫过的图形10、D【解析】根据题意可得等量关系:9枚黄金的重量=11枚白银的重量;(10枚白银的重量+1枚黄金
15、的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先求得ACO=60,得出OAC=30,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45,BCB=75,ACB=120,ACO=60,OAC=30,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛
16、】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题12、【解析】由抛物线开口向下,则a0,抛物线与y轴交于y轴负半轴,则c0,对称轴在y轴左侧,则b0,因此可判断a+b+2c与0的大小【详解】抛物线开口向下a0抛物线与y轴交于y轴负半轴,c0对称轴在y轴左侧0b0a+b+2c0故答案为【点睛】本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键13、【解析】利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等;过B作BFAE,交AE的延长线于F,利用中的BEP=90,利用
17、勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;连接BD,求出ABD的面积,然后减去BDP的面积即可;在RtABF中,利用勾股定理可求AB2,即是正方形的面积【详解】EAB+BAP=90,PAD+BAP=90,EAB=PAD,又AE=AP,AB=AD,在APD和AEB中,APDAEB(SAS);故此选项成立;APDAEB,APD=AEB,AEB=AEP+BEP,APD=AEP+PAE,BEP=PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延
18、长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB=,BE=,APDAEB,PD=BE=,SABP+SADP=SABD-SBDP=S正方形ABCD-DPBE=(4+)-=+故此选项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确故答案为【点睛】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识14、
19、【解析】如图,连接OE,利用切线的性质得OD=3,OEBC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD-S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积【详解】连接OE,如图,以AD为直径的半圆O与BC相切于点E,ODCD3,OEBC,四边形OECD为正方形,由弧DE、线段EC、CD所围成的面积S正方形OECDS扇形EOD32,阴影部分的面积,故答案为【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了矩形的性质和扇形的面积公式15
20、、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程x2+1x-k=0有实数根,=12-11(-k)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键16、【解析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,
21、男2)(女2,女1)由表可知总共有12种结果,每种结果出现的可能性相同挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比三、解答题(共8题,共72分)17、(1)证明见解析;(2)【解析】(1)由切线的性质可知DAB=90,由直角所对的圆周为90可知ACB=90,根据同角的余角相等可知DAC=B,然后由等腰三角形的性质可知B=OCB,
22、由对顶角的性质可知DCE=OCB,故此可知DAC=DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由DAC=DCE,D=D可知DECDCA,故此可得到DC2=DEAD,故此可求得DE=,于是可求得AE=【详解】解:(1)AD是圆O的切线,DAB=90AB是圆O的直径,ACB=90DAC+CAB=90,CAB+ABC=90,DAC=BOC=OB,B=OCB又DCE=OCB,DAC=DCE(2)AB=2,AO=1sinD=,OD=3,DC=2在RtDAO中,由勾股定理得AD=DAC=DCE,D=D,DECDCA,即解得:DE=,AE=ADDE=18、(1)见解析(2)见解
23、析【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,DEF即为所求【点睛】本题主要考查作图位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质19、证明见解析.【解析】利用三角形中位线定理判定OEBC,且OE=BC结合已知条件CF=BC,则OE/CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论【详解】四边形ABCD是平行四边形,点O是BD的中点又点E是边CD的中点,OE是BCD的中位线,OEBC,且OE=BC又CF=BC,OE=CF又点F在BC的延长线上,OECF,四
24、边形OCFE是平行四边形【点睛】本题考查了平行四边形的性质和三角形中位线定理此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理熟记相关定理并能应用是解题的关键.20、【解析】根据分式的混合运算先计算括号里的再进行乘除.【详解】(x-1- )=【点睛】此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.21、(1)5;(2)2x【解析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)
25、先求出两个不等式的解集,再找出解集的公共部分即可【详解】(1)原式 =5;(2)解不等式得,x2,解不等式得, 所以不等式组的解集是 用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定22、(1)答案见解析;(2)【解析】分析:(1)直接列举出所有可能的结果即可.(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器
26、乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.共有6种等可能的结果数;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)袋子中白球有2个;(2)见解析, .【解析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率
27、公式即可求得答案【详解】解:(1)设袋子中白球有x个,根据题意得:,解得:x2,经检验,x2是原分式方程的解,袋子中白球有2个;(2)画树状图得:共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,两次都摸到相同颜色的小球的概率为:【点睛】此题考查了列表法或树状图法求概率注意掌握方程思想的应用注意概率=所求情况数与总情况数之比24、 (1)72,见解析;(2)7280;(3).【解析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率【详解】(1)扇形统计图中玉兰所对的圆心角为360(1-40%-15%-25%)=72月季的株数为200090%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为800091%=7280(株). 故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键
限制150内