《2023届广东省广州市第二中学重点名校中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省广州市第二中学重点名校中考数学模试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )ABCD2魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边
2、形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A0.5B1C3D3哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A BC D4如图,二次函数y=ax2+bx+c(a0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA
3、=OC有下列结论:abc0;3b+4c0;c1;关于x的方程ax2+bx+c=0有一个根为,其中正确的结论个数是()A1B2C3D45如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD6如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(4,0),顶点B在第二象限,BAO=60,BC交y轴于点D,DB:DC=3:1若函数(k0,x0)的图象经过点C,则k的值为()A B C D7下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D
4、1098如图,在RtABC中,B90,AB6,BC8,点D在BC上,以AC为对角线的所有ADCE中,DE的最小值是( )A4B6C8D109甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息已知甲先出发2s在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:a8;b92;c1其中正确的是( )AB仅有C仅有D仅有10地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )A149106千米2 B14.9107千米2 C1.49108千米2 D0.149109千2二、填空题(共7小题,每小题3分,满分2
5、1分)11如图,设ABC的两边AC与BC之和为a,M是AB的中点,MCMA5,则a的取值范围是_12因式分解: 13点A(a,b)与点B(3,4)关于y轴对称,则a+b的值为_14若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_15如图,四边形ABCD是菱形,BAD60,AB6,对角线AC与BD相交于点O,点E在AC上,若OE2,则CE的长为_16若关于x的分式方程有增根,则m的值为_17=_三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标系xOy中,正比例函数yx的图象与一次函数ykxk的图象的交点坐标为A(m,2)(1)求
6、m的值和一次函数的解析式;(2)设一次函数ykxk的图象与y轴交于点B,求AOB的面积;(3)直接写出使函数ykxk的值大于函数yx的值的自变量x的取值范围19(5分)先化简,再求值:,其中x=120(8分)在等腰RtABC中,ACB=90,AC=BC,点D是边BC上任意一点,连接AD,过点C作CEAD于点E(1)如图1,若BAD=15,且CE=1,求线段BD的长;(2)如图2,过点C作CFCE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM21(10分)如图,AD,BE,AFDC求证:BCEF22(10分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直
7、的关系,而折断部分与未折断树杆形成的夹角树杆旁有一座与地面垂直的铁塔,测得米,塔高米在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、在同一条直线上,点、也在同一条直线上求这棵大树没有折断前的高度(结果精确到,参考数据:,)23(12分)如图,矩形ABCD的对角线AC、BD交于点O,且DEAC,CEBD(1)求证:四边形OCED是菱形;(2)若BAC=30,AC=4,求菱形OCED的面积24(14分)已知关于的一元二次方程 (为实数且)求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【
8、解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观察图形2、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键3、D【解析】试题解析:设
9、现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得故选D考点:由实际问题抽象出二元一次方程组4、B【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断;由对称轴=2可知a=,由图象可知当x=1时,y0,可判断;由OA=OC,且OA1,可判断;把-代入方程整理可得ac2-bc+c=0,结合可判断;从而可得出答案【详解】解:图象开口向下,a0,对称轴为直线x=2,0,b0,与y轴的交点在x轴的下方,c0,abc0,故错误.对称轴为直线x=2,=2,a=,由图象可知当x=1时,y0,a+b+c0,4a+4b+4c0,4()+4b+4c0,3b+4c0,故错误.
10、由图象可知OA1,且OA=OC,OC1,即-c1,c-1,故正确.假设方程的一个根为x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,方程有一个根为x=-c,由可知-c=OA,而当x=OA是方程的根,x=-c是方程的根,即假设成立,故正确.综上可知正确的结论有三个:.故选B.【点睛】本题主要考查二次函数的图象和性质熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键特别是利用好题目中的OA=OC,是解题的关键.5、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统
11、一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.6、D【解析】解:四边形ABCD是平行四边形,点A的坐标为(4,0),BC=4,DB:DC=3:1,B(3,OD),C(1,OD),BAO=60,COD=30,OD=,C(1,),k=,故选D点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键7、C【解析】试题解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:
12、n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.8、B【解析】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小,根据三角形中位线定理即可求解【详解】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小。ODBC,BCAB,ODAB,又OC=OA,OD是ABC的中位线,OD=AB=3,DE=2OD=6.故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.9、A【解析】解:乙出发时甲行了2秒,相距8m,甲的速度为8/24m/ s100秒时乙开始休息乙的速度是500/10
13、05m/ sa秒后甲乙相遇,a8/(54)8秒因此正确100秒时乙到达终点,甲走了4(1002)408 m,b50040892 m 因此正确甲走到终点一共需耗时500/4125 s,c12521 s 因此正确终上所述,结论皆正确故选A10、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数解:149000000=1.492千米1故选C把一个数写成a10n的形式,叫做科学记数法,其中1|a|10,n为整数因此不能写成149
14、106而应写成1.492二、填空题(共7小题,每小题3分,满分21分)11、10a10【解析】根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围【详解】M是AB的中点,MC=MA=5,ABC为直角三角形,AB=10;a=AC+BCAB=10;令AC=x、BC=y,xy=,x、y是一元二次方程z2-az+=0的两个实根,=a2-40,即a10综上所述,a的取值范围是10a10故答案为10a10【点睛】
15、本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点12、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分解即可:13、1【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可【详解】解:点与点 关于y轴对称, 故答案为1【点睛】考查关于轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数14、ACBD【解析】根据题意画出相应的图形,如
16、图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到FEH=90,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到EMO=90,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到AOD=90,根据垂直定义得到AC与BD垂直【详解】四边形EFGH是矩形,FEH=90,又点E、F、分别是AD、AB、各边的中点,EF是三角形ABD的中位线,EFBD,FEH=OMH=90,又点E、H分别是AD、CD各边的中点,EH是三角形ACD的中位线,EHAC,OMH=COB=90,即ACBD故答案为:ACBD【点睛】此题考查了矩形的
17、性质,三角形的中位线定理,以及平行线的性质根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.15、5或【解析】分析:由菱形的性质证出ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案详解:四边形ABCD是菱形,AB=AD=6,ACBD,OB=OD,OA=OC, ABD是等边三角形,BD=AB=6, 点E在AC上, 当E在点O左边时 当点E在点O右边时 或;故答案为或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.16、【解析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为
18、整式方程的方程即可求出m的值【详解】方程两边都乘x-3,得x-2(x-3)=m2,原方程增根为x=3,把x=3代入整式方程,得m=【点睛】解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值17、1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+22=1故答案为:1点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.三、解答题(共7小题,满分69分)18、(1)y=1x1(1)1(3)x1【解析
19、】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kxk计算出k的值,从而得到一次函数解析式为y=1x1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x1时,直线y=kxk都在y=x的上方,即函数y=kxk的值大于函数y=x的值试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kxk得1kk=1,解得k=1,所以一次函数解析式为y=1x1;(1)把x=0代入y=1x1得y=1,则B点坐标为(0,1),所以SAOB=11=1;(3)自变量x的取值范围是x1考点:两条直线相交
20、或平行问题19、【解析】试题分析:试题解析:原式=当x=时,原式=.考点:分式的化简求值20、 (1) 2 ;(2)见解析【解析】分析:(1)先求得:CAE=45-15=30,根据直角三角形30角的性质可得AC=2CE=2,再得ECD=90-60=30,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明ACEBCF,则BFC=AEC=90,证明C、M、B、F四点共圆,则BCM=MFB=45,由等腰三角形三线合一的性质可得AM=BM详解:(1)ACB=90,AC=BC,CAB=45,BAD=15,CAE=4515=30,RtACE中,CE=
21、1,AC=2CE=2,RtCED中,ECD=9060=30,CD=2ED,设ED=x,则CD=2x,CE=x,x=1,x=,CD=2x=,BD=BCCD=ACCD=2;(2)如图2,连接CM,ACB=ECF=90,ACE=BCF,AC=BC,CE=CF,ACEBCF,BFC=AEC=90,CFE=45,MFB=45,CFM=CBA=45,C、M、B、F四点共圆,BCM=MFB=45,ACM=BCM=45,AC=BC,AM=BM点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30角的性质和勾股定理,第二问有难度,构建辅助线,证明ACEBCF
22、是关键21、证明见解析.【解析】想证明BC=EF,可利用AAS证明ABCDEF即可【详解】解:AFDC,AF+FCFC+CD,ACFD,在ABC 和DEF 中,ABCDEF(AAS)BCEF【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22、米【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论试题解析:解:ABEF,DEEF,ABC=90,ABDE,FABFDE, ,FB=4米,BE=6米,DE=9米,得AB=3.6米,ABC=90,BAC=53,cosBAC=,A
23、C= =6米,AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答23、(1)证明见解析;(1)【解析】(1)由平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可(1)解直角三角形求出BC=1AB=DC=1,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=1OF=1,求出菱形的面积即可【详解】证明:,四边形OCED是平行四边形,矩形ABCD,四边形OCED是菱形;在矩形ABCD中,连接OE,交CD于点F,四边形OCED为菱形,为CD中点,为BD中点,【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半24、 (1)证明见解析;(2)或 【解析】(1)求出的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可【详解】(1)依题意,得 , ,方程总有两个实数根 (2), , 方程的两个实数根都是整数,且是正整数,或或【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac的关系是解答此题的关键
限制150内