《2023届江苏省南京市南航附中中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省南京市南航附中中考四模数学试题含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且2x1时,y的最大值为9,则a的值为A1或2 B或C D12据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )ABCD3如图,ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若A=60,B=100,BC=4,则扇形BDE的面积为何?()ABCD4下列选项中,可以用来证明命题“若a2b2,则ab“是假命题的反例是()Aa2,b1Ba3,b2Ca0,b1Da2,b15如图,点C、D是线段AB上的两点,点D是线段AC的
3、中点若AB=10cm,BC=4cm,则线段DB的长等于()A2cmB3cmC6cmD7cm6已知点,为是反比例函数上一点,当时,m的取值范围是( )ABCD7春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A经过集中喷洒药物,室内空气中的含药量最高达到B室内空气中的含药量不低于的持续时间达到了C当
4、室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内8有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD9如图,ABC内接于O,AD为O的直径,交BC于点E,若DE=2,OE=3,则tanACBtanABC=( )A2B3C4D510某市2010年元旦这天的最高气温是8,最低气温是
5、2,则这天的最高气温比最低气温高()A10B10C6D611如图,A(4,0),B(1,3),以OA、OB为边作OACB,反比例函数(k0)的图象经过点C则下列结论不正确的是()AOACB的面积为12B若y5C将OACB向上平移12个单位长度,点B落在反比例函数的图象上D将OACB绕点O旋转180,点C的对应点落在反比例函数图象的另一分支上12如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为_14如图,在正方形ABCD中,E是AB上
6、一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 15对于函数,我们定义(m、n为常数)例如,则已知:若方程有两个相等实数根,则m的值为_16如图,在ABC中,ACB=90,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_17如图,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A顺时针旋转90后,得到AFB,连接EF,下列结论:EAF45;AEDAEF;ABEACD;BE1+DC1DE1其中正确的是_(填序号)18如图,在ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cosC=,那么GE=_
7、三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:2tan45-(-)-20(6分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG()如图,求OD的长及的值;()如图,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BEFG,记旋转角为(0360),连接AG在旋转过程中,当BAG=90时,求的大小;在旋转过程中,求AF的长取最大值时,点F的坐标及此时的大小(直接写出结果即可)21(6
8、分)如图,是菱形的对角线,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数22(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市
9、场销售总金额相同,求m的值23(8分)计算:+821(+1)0+2sin6024(10分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N,若NMNP,求n的值25(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形(1)若
10、某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数(k0),它的图象的伴侣正方形为ABCD,点D(2,m)(m2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4)写出伴侣正方形在抛物线上的另一个顶点坐标_,写出符合题意的其中一条抛物线解析式_,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_(本小题只需直接写出答案)26(12分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边AB上如图1,当点E在边BC上时,求证D
11、EEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长27(12分)图1是某市2009年4月5日至14日每天最低气温的折线统计图图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是_,中位数是_,方差是_请用扇形图表示出这十天里温度的分布情况参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】先求
12、出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)
13、的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点2、B【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:将360000000用科学记数法表示为:3.61故选:B点睛:此题考查科学记数法的表示方法科学记
14、数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:A=60,B=100,C=18060100=20,DE=DC,C=DEC=20,BDE=C+DEC=40,S扇形DBE=故选C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=4、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题由此即可解答.【详解】当a2,b1时,(2)212,但是21,a2,b1是假命题的反例故选A【点睛】本题考查了命题与定理,要说明数学命题的错误
15、,只需举出一个反例即可,这是数学中常用的一种方法5、D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.6、A【解析】直接把n的值代入求出m的取值范围【详解】解:点P(m,n),为是反比例函数y=-图象上一点,当-1n-1时,n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1m1故选A【点睛】此题主
16、要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键7、C【解析】利用图中信息一一判断即可.【详解】解: A、正确不符合题意B、由题意x=4时,y=8,室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.535,故本选项错误,符合题意;D、正确不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.8、C【解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.
17、故选C.【点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件9、C【解析】如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案【详解】如图,连接BD、CD在和中,同理可得:,即为O的直径故选:C【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键10、A【解析】用最高气
18、温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10即这天的最高气温比最低气温高10故选A11、B【解析】先根据平行四边形的性质得到点的坐标,再代入反比例函数(k0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:A(4,0),B(1,3), ,反比例函数(k0)的图象经过点,反比例函数解析式为.OACB的面积为,正确;当时,故错误;将OACB向上平移12个单位长度,点的坐标变为,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将OACB绕点O旋转180,点C的对应点落在反比例函
19、数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.12、A【解析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据方程的系数结合根的判别式即可得出=m24m=0,将其代入2m28m+1中即可得出结论【详解】关于x的方程x2mx+m=0有两个相等实数根,=(m)24m=m24m=0,2m28m+1=
20、2(m24m)+1=1故答案为1【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键14、10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.四边形ABCD是正方形,B、D关于AC对称,PB=PD,PB+PE=PD+PE=DE.BE=2,AE=3BE,AE=6,AB=8,DE=10,故PB+PE的最小值是10.故答案为10.15、 【解析】分析:根据题目中所给定义先求,再利用根与系
21、数关系求m值.详解:由所给定义知,,若=0,解得m=.点睛:一元二次方程的根的判别式是,=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.0说明方程有两个不同实数解,=0说明方程有两个相等实数解,0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.16、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD
22、=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图17、【解析】根据旋转得到,对应角CADBAF,由EAFBAF+BAECAD+BAE即可判断由旋转得出AD=AF, DAEEAF,及公共边即可证明在ABEACD中,只有ABAC、ABEACD45两个条件,无法证明先由ACDABF,得出ACDABF45,进而得出EBF=90,然后在R
23、tBEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定正确【详解】由旋转,可知:CADBAFBAC90,DAE45,CAD+BAE45,BAF+BAEEAF45,结论正确;由旋转,可知:ADAF在AED和AEF中,AEDAEF(SAS),结论正确;在ABEACD中,只有ABAC,、ABEACD45两个条件,无法证出ABEACD,结论错误;由旋转,可知:CDBF,ACDABF45,EBFABE+ABF90,BF1+BE1EF1AEDAEF,EFDE,又CDBF,BE1+DC1DE1,结论正确故答案为:【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理
24、是解题的关键18、【解析】过点E作EFBC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合BGDBEF即可.【详解】过点E作EFBC交BC于点F.AB=AC, AD为BC的中线 ADBC EF为ADC的中位线.又cosC=,AB=AC=5,AD=3,BD=CD=4,EF=,DF=2BF=6在RtBEF中BE=,又BGDBEF,即BG=.GE=BE-BG=故答案为.【点睛】本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、2-【解析】先求三角函数,再根据实数混
25、合运算法计算.【详解】解:原式=21-1-=1+1-=2-【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.20、()()=30或150时,BAG=90当=315时,A、B、F在一条直线上时,AF的长最大,最大值为+2,此时=315,F(+,)【解析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)因为BAG=90,BG=2AB,可知sinAGB=,推出AGB=30,推出旋转角=30,据对称性可知,当ABG=60时,BAG=90,也满足条件,此时旋转角=150,当=315时,A、B、F在一条直线上时,AF的长最大.【详解】()如图1中,A(0,1),OA=1
26、,四边形OADC是正方形,OAD=90,AD=OA=1,OD=AC=,AB=BC=BD=BO=,BD=DG,BG=,=()如图2中,BAG=90,BG=2AB,sinAGB=,AGB=30,ABG=60,DBG=30,旋转角=30,根据对称性可知,当ABG=60时,BAG=90,也满足条件,此时旋转角=150,综上所述,旋转角=30或150时,BAG=90如图3中,连接OF,四边形BEFG是正方形的边长为BF=2,当=315时,A、B、F在一条直线上时,AF的长最大,最大值为+2,此时=315,F(+,)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要
27、熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用21、(1)答案见解析;(2)45【解析】(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;(2)根据DBFABDABF计算即可;【详解】(1)如图所示,直线EF即为所求;(2)四边形ABCD是菱形,ABDDBCABC75,DCAB,AC,ABC150,ABC+C180,CA30EF垂直平分线段AB,AFFB,AFBA30,DBFABDFBE45【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题22、m的值是12.1【解析】根据去年黄桃和苹果的市
28、场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值【详解】由题意可得,10006+20004=1000(1m%)6+2000(1+2m%)4(1m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值23、6+【解析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算【详解】解:原式=+81+2=3+41+=6+【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合
29、并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍24、20(1)y2x5, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)
30、、B(0,-5)代入y=kx+b中,得:k=2、b=-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用25、(1);(2);(3)(1,3);(7,3);(4,7);(4,1),对应的抛物线分别为 ; ;,偶数.【解析】(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,(2)作DE、CF分别垂直于x、y轴,可知ADEBA
31、OCBF,列出m的等式解出m,(3)本问的抛物线解析式不止一个,求出其中一个【详解】解:(1)正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形当点A在x轴正半轴、点B在y轴负半轴上时,AO=1,BO=1,正方形ABCD的边长为 ,当点A在x轴负半轴、点B在y轴正半轴上时,设正方形的边长为a,得3a=, ,所以伴侣正方形的边长为或;(2)作DE、CF分别垂直于x、y轴,知ADEBAOCBF,此时,m2,DE=OA=BF=mOB=CF=AE=2mOF=BF+OB=2C点坐标为(2m,2),2m=2(2m)解得m=1,反比例函数的解析式为y= ,(3)根据题意画出图形,如图所示:过C作CF
32、x轴,垂足为F,过D作DECF,垂足为E,CEDDGBAOBAFC,C(3,4),即CF=4,OF=3,EG=3,DE=4,故DG=DEGE=DEOF=43=1,则D坐标为(1,3);设过D与C的抛物线的解析式为:y=ax2+b,把D和C的坐标代入得: ,解得 ,满足题意的抛物线的解析式为y=x2+ ;同理可得D的坐标可以为:(7,3);(4,7);(4,1),;对应的抛物线分别为 ; ;,所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.26、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2【解析】(1)、根据等边三角形的性
33、质得出CED=60,从而得出EDB=10,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60, EDB=60B=10,EDB=B, DE=EB;(2) ED=EB, 理由如下:取AB的中点O,连接CO、EO,ACB=90,ABC=10, A=60,OC=O
34、A, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60,BOE=60, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60,BOE=60,COEBOE,EC=EB,ED=EB, EHAB,DH=BH=1,GEAB, G=180A=120, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,即CG=227、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.【解析】(1)根据
35、图1找出8、9、10的天数,然后补全统计图即可;(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;(3)求出7、8、9、10、11的天数在扇形统计图中所占的度数,然后作出扇形统计图即可【详解】(1)由图1可知,8有2天,9有0天,10有2天,补全统计图如图;(2)根据条形统计图,7出现的频率最高,为3天,所以,众数是7;按照温度从小到大的顺序排列,第5个温度为7,第6个温度为8,所以,中位数为(7+8)=7.5;平均数为(62+73+82+102+11)=80=8,所以,方差=2(68)2+3(78)2+2(88)2+2(108)2+(118)2,=(8+3+0+8+9),=28,=2.8;(3)6的度数,360=72,7的度数,360=108,8的度数,360=72,10的度数,360=72,11的度数,360=36,作出扇形统计图如图所示【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数给定一组数据,出现次数最多的那个数,称为这组数据的众数
限制150内