2023届江苏省南京市重点中学中考数学押题试卷含解析.doc
《2023届江苏省南京市重点中学中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省南京市重点中学中考数学押题试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)11903年、英国物理学家卢瑟福通过实验证实,放射性物质
2、在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A810 年B1620 年C3240 年D4860 年2为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A3,2.5B1,2C3,3D2,23上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远
3、便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()ABCD4二次函数ya(x4)24(a0)的图象在2x3这一段位于x轴的下方,在6x7这一段位于x轴的上方,则a的值为( )A1B1C2D25小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )ABCD6在刚过去的2
4、017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )A13.51106B1.351107C1.351106D0.15311087如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C12D68如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为ABC2D19下列等式正确的是()A(a+b)2=a2+b2B3n+3n+3n=3n+1Ca3+a3=a6D(ab)2=a10sin60的值为()ABCD二、填空题(本大题共6个小题
5、,每小题3分,共18分)11如图,在矩形ABCD中,AB=2,AD=6,EF分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为_12如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线于P点,连OP,则OP2OA2=_13一次函数y=kx+b(k0)的图象如图所示,那么不等式kx+b0的解集是_14小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买_张普通贺卡15若关于x的方程kx
6、2+2x1=0有实数根,则k的取值范围是_16用换元法解方程时,如果设,那么原方程化成以为“元”的方程是_三、解答题(共8题,共72分)17(8分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上18(8分)如图,小明的家在某住宅楼AB的最顶层(ABBC),他家的后面有一建筑物CD(CDAB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43,顶部D的仰角是25,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米)19(8分)正方形ABCD中,点P为直线AB上一个动
7、点(不与点A,B重合),连接DP,将DP绕点P旋转90得到EP,连接DE,过点E作CD的垂线,交射线DC于M,交射线AB于N问题出现:(1)当点P在线段AB上时,如图1,线段AD,AP,DM之间的数量关系为 ;题探究:(2)当点P在线段BA的延长线上时,如图2,线段AD,AP,DM之间的数量关系为 ;当点P在线段AB的延长线上时,如图3,请写出线段AD,AP,DM之间的数量关系并证明;问题拓展:(3)在(1)(2)的条件下,若AP=,DEM=15,则DM= 20(8分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、求二次函数的解析式;写出
8、使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;21(8分)在RtABC中,ACB90,以点A为圆心,AC为半径,作A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交A于点F,连接AF、BF、DF(1)求证:BF是A的切线(2)当CAB等于多少度时,四边形ADFE为菱形?请给予证明22(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了
9、_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率23(12分)综合与实践猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2
10、,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角BAF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,
11、请探究DFG的度数,并直接写出结果(用含的式子表示)24如图,AB为O的直径,D为O上一点,以AD为斜边作ADC,使C=90,CAD=DAB求证:DC是O的切线;若AB=9,AD=6,求DC的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据半衰期的定义,函数图象的横坐标,可得答案【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键2、D【解析】试题解析:表中数据为从小到大排列数据1小时出现了三次最多为众数;1处在第5位为中位数所以本题这组数据的中位数是1,众
12、数是1故选D考点:1.众数;1.中位数.3、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键4、A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1x2这段位于x轴的上方,而抛物线在2x3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入ya(x4)24(a0)可求出a=1.故选A5、A【解析】圆柱体的底面积为:()2,矿石的体积
13、为:()2h= .故答案为.6、B【解析】根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a10n(1a10且n为整数).7、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的周长的两倍,由此可求出BC的值.【详解】AB=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,DE=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=
14、12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.8、A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OMOD,OMEF,MFO=60,由三角函数求出OM,再由勾股定理求出MD即可【详解】连接OM、OD、OF, 正六边形ABCDEF内接于O,M为EF的中点,OMOD,OMEF,MFO=60,MOD=OMF=90,OM=OFsinMFO=2=,MD=,故选A【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键9、B【解析】(1)根据完全平方公式进行解答; (2)根
15、据合并同类项进行解答;(3)根据合并同类项进行解答;(4)根据幂的乘方进行解答.【详解】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、3n+3n+3n=3n+1,正确;C、a3+a3=2a3,故此选项错误;D、(ab)2=a2b,故此选项错误;故选B【点睛】本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.10、B【解析】解:sin60=故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、1或12【解析】当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平
16、分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值【详解】解:如图1所示:由翻折的性质可知PF=CF=1,ABFE为正方形,边长为2,AF=2PA=12如图2所示:由翻折的性质可知PF=FC=1ABFE为正方形,BE为AF的垂直平分线AP=PF=1故答案为:1或12【点睛】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键12、1【解析】解:直线y=x+b与双曲线 (x0)交于点P,设P点的坐标(x,y),xy=b,xy=8,而直线y=x+b与x轴交于A点,OA=b又OP2=x2+y2,OA2=b2,OP2OA2=x2+y2b2=(xy
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 江苏省 南京市 重点中学 中考 数学 押题 试卷 解析
限制150内