2023届宿迁市重点中学中考冲刺卷数学试题含解析.doc
《2023届宿迁市重点中学中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届宿迁市重点中学中考冲刺卷数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列图形中,可以看作是中心对称图形的是( )ABCD2下列各式中,不是多项式2x24x+2的因式的是()A2B2(x1)C(x1)2D2(x2)3如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )AB
2、CD4下列几何体中三视图完全相同的是()ABCD5如图,O中,弦AB、CD相交于点P,若A30,APD70,则B等于()A30B35C40D506如图,O的半径OD弦AB于点C,连接AO并延长交O于点E,连接EC,若AB=8,CD=2,则cosECB为()ABCD7已知抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:4a+2b0; 1a; 对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+cn1有两个不相等的实数根其中结论正确的个数为()A1个B2个C3个D4个8规定:如果关于x
3、的一元二次方程ax2+bx+c=0(a0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论: 方程x2+2x8=0是倍根方程;若关于x的方程x2+ax+2=0是倍根方程,则a=3;若关于x的方程ax26ax+c=0(a0)是倍根方程,则抛物线y=ax26ax+c与x轴的公共点的坐标是(2,0)和(4,0);若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程上述结论中正确的有( )ABCD9我国古代数学著作九章算术中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长
4、均为1),则该“堑堵”的侧面积为()A16+16B16+8C24+16D4+410在下列实数中,3,0,2,1中,绝对值最小的数是()A3B0CD1二、填空题(共7小题,每小题3分,满分21分)11如图,点A、B、C、D在O上,O点在D的内部,四边形OABC为平行四边形,则OAD+OCD= .12将两块全等的含30角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将RtBCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形13分解因式: _.14 “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包
5、车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费若设参加游览的同学一共有x人,为求x,可列方程_15若正多边形的一个内角等于140,则这个正多边形的边数是_. 16如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是_17函数y中,自变量x的取值范围是_三、解答题(共7小题,满分69分)18(10分)阅读材料,解答下列问题:神奇的等式当ab时,一般来说会有a2+ba+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:()2+=+,()2+=+,()2+=+()2,()2+=+()2,(1)特例验证:请再写出一个具有上述
6、特征的等式: ;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示为: ;(3)证明推广:(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;等式()2+=+()2(m,n为任意实数,且n0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由19(5分)在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,4),B(3,2),C(6,3)画出ABC关于轴对称的A1B1C1;以M点为位似中心,在网格中画出A1B1C1的位似图形A2B2C2,使A2B2C2与A1B1C1的相似比为2:120(8分)在一节数学活动课上,王老师将本
7、班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图所示,乙绘制的如图所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?21(10分)如图,在ABC中,ABAC,
8、BAC90,M是BC的中点,延长AM到点D,AEAD,EAD90,CE交AB于点F,CDDF(1)CAD_度;(2)求CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明22(10分)抛物线y=ax2+bx+3(a0)经过点A(1,0),B(,0),且与y轴相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tanDCB=tanACO若存在,请求出点D的坐标,若不存在,说明理由23(12分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60得到点P,我们称点P是点P的“旋转对应点
9、”(1)若点P(4,2),则点P的“旋转对应点”P的坐标为 ;若点P的“旋转对应点”P的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P的坐标为 ;(2)如图2,点Q是线段AP上的一点(不与A、P重合),点Q的“旋转对应点”是点Q,连接PP、QQ,求证:PPQQ;(3)点P与它的“旋转对应点”P的连线所在的直线经过点(,6),求直线PP与x轴的交点坐标24(14分)如图,ABC和BEC均为等腰直角三角形,且ACBBEC90,AC4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角CPD,线段BE与CD相交于点F(1)求证:;(2)连接BD,请你判断
10、AC与BD有什么位置关系?并说明理由;(3)若PE1,求PBD的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180后能够重合2、D【解析】原式分解因式,判断即可【详解】原式2(x22x+1)2(x1)2。故选:D【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方
11、法是解本题的关键3、B【解析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3CE=AC-AE=4-3=1在RtCED中,CD= 故选:B【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.4、A【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有
12、关知识,注意三视图都相同的常见的几何体有球和正方体5、C【解析】分析:欲求B的度数,需求出同弧所对的圆周角C的度数;APC中,已知了A及外角APD的度数,即可由三角形的外角性质求出C的度数,由此得解解答:解:APD是APC的外角,APD=C+A;A=30,APD=70,C=APD-A=40;B=C=40;故选C6、D【解析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度利用锐角三角函数的定义即可求出答案【详解】解:连接EB,由圆周角定理可知:B=90,设O的半径为r,由垂径定理可知:AC=BC=4,CD=2,OC=r-2,由勾股定理
13、可知:r2=(r-2)2+42,r=5,BCE中,由勾股定理可知:CE=2,cosECB=,故选D【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型7、C【解析】由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论错误;利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1a-,结论正确;由抛物线的顶点坐标及a0,可得出n=a+b+c,且nax2+bx+c,进而可得出对于任意实数m,a+bam2+bm总成立,结论正确;由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将
14、直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合正确【详解】:抛物线y=ax2+bx+c的顶点坐标为(1,n),-=1,b=-2a,4a+2b=0,结论错误;抛物线y=ax2+bx+c与x轴交于点A(-1,0),a-b+c=3a+c=0,a=-又抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),2c3,-1a-,结论正确;a0,顶点坐标为(1,n),n=a+b+c,且nax2+bx+c,对于任意实数m,a+bam2+bm总成立,结论正确;抛物线y=ax2+bx+c的顶点坐标
15、为(1,n),抛物线y=ax2+bx+c与直线y=n只有一个交点,又a0,抛物线开口向下,抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合正确故选C【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键8、C【解析】分析:通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;设=2,得到=2=2,得到当=1时,=2,当=1时,=2,于是得到结论;根据“倍根方程”的定义即可得到结论;若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+
16、5x+n=0即可得到正确的结论;详解:由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=2, 2,或2,方程-2x-8=0不是倍根方程;故错误;关于x的方程+ax+2=0是倍根方程, 设=2, =2=2, =1,当=1时,=2, 当=1时,=2, +=a=3, a=3,故正确;关于x的方程a-6ax+c=0(a0)是倍根方程, =2,抛物线y=a-6ax+c的对称轴是直线x=3, 抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故正确;点(m,n)在反比例函数y=的图象上, mn=4, 解m+5x+n=0得=,=, =4, 关于x的方程m+5x+n=0不是倍根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 宿迁市 重点中学 中考 冲刺 数学试题 解析
限制150内