《2023届山东省潍坊市高密市中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省潍坊市高密市中考四模数学试题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,若ABCD,CDEF,那么BCE( )A12B21C18012D180212一元二次方程x25x6=0的根是()Ax1=1,x2=6Bx1=2,x2=3Cx1=1,x2=6Dx1=1,x2=63有一个数用科学记数法表示为5.2
2、105,则这个数是()A520000BC52000D52000004如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为()A8B8C4D65拒绝“餐桌浪费”,刻不容缓节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年“”这个数据用科学记数法表示为( )A B C D.6如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D87今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为
3、60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )Ax(x-60)=1600Bx(x+60)=1600C60(x+60)=1600D60(x-60)=16008已知圆锥的侧面积为10cm2,侧面展开图的圆心角为36,则该圆锥的母线长为()A100cmBcmC10cmDcm9某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众数分别是( )A10,15B13,15C13,20D15,1510正比例函数y=(k+1)x,若y随x增大
4、而减小,则k的取值范围是()Ak1Bk1Ck1Dk1二、填空题(共7小题,每小题3分,满分21分)11如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_12抛物线yx2+bx+c的部分图象如图所示,则关于x的一元二次方程x2+bx+c0的解为_13若圆锥的母线长为cm,其侧面积,则圆锥底面半径为 cm14如图,在ABC中,D,E分别是AB,AC边上的点,DEBC若AD6,BD2,DE3,则BC_15已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 16如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC
5、交AB于点P,已知OAB=22,则OCB=_17已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为_三、解答题(共7小题,满分69分)18(10分)解不等式,并把解集在数轴上表示出来19(5分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32的方向上,向东走过780米后到达B处,测得海岛在南偏西37的方向,求小岛到海岸线的距离(参考数据:tan37=cot530.755,cot37=tan531.327,tan32=cot580.625,cot32=tan581.1)20(8分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔的距离为80海里的A处,它
6、沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔的距离.(结果保留根号)21(10分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FAB=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长22(10分)如图,一棵大树在一次强台风中折断倒下,未折断树杆与地面仍保持垂直的关系,而折断部分与未折断树杆形成的
7、夹角树杆旁有一座与地面垂直的铁塔,测得米,塔高米在某一时刻的太阳照射下,未折断树杆落在地面的影子长为米,且点、在同一条直线上,点、也在同一条直线上求这棵大树没有折断前的高度(结果精确到,参考数据:,)23(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值24(14分)下面
8、是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得APl作法:如图在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C连接AC,AB,延长BA到点D;作DAC的平分线AP所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:ABAC,ABCACB (填推理的依据)DAC是ABC的外角,DACABC+ACB (填推理的依据)DAC2ABCAP平分DAC,DAC2DAPDAPABCAPl (填推理的依据)参考答案一、选择题(每小题
9、只有一个正确答案,每小题3分,满分30分)1、D【解析】先根据ABCD得出BCD=1,再由CDEF得出DCE=180-2,再把两式相加即可得出结论【详解】解:ABCD,BCD=1,CDEF,DCE=180-2,BCE=BCD+DCE=180-2+1故选:D【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补2、D【解析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1”来解题【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D【点睛】本题考查了一元二次方程的解法解一元二次方程常
10、用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法本题运用的是因式分解法3、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】5.2105=520000, 故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BOEF,再根据矩形的性
11、质可得OA=OB,根据等边对等角的性质可得BAC=ABO,再根据三角形的内角和定理列式求出ABO=30,即BAC=30,根据直角三角形30角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,BE=BF,OE=OF,BOEF,在RtBEO中,BEF+ABO=90,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,BAC=ABO,又BEF=2BAC,即2BAC+BAC=90,解得BAC=30,FCA=30,FBC=30,FC=2,BC=2,AC=2BC=4,AB=6,故选D点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三
12、线合一的性质,直角三角形30角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出BAC=30是解题的关键.5、C【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】32400000=3.24107元故选C【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键6、B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在RtAOD中,OA2=(OC-CD)2+AD2,即OA2=(OA
13、-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键7、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x60)米,根据长方形的面积计算法则列出方程考点:一元二次方程的应用8、C【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长【详解】设母线长为R,则圆锥的侧面积=10,R=10cm,故选C【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.9、D【解析】将五个答题数,从小打到排列,5个数中间的就
14、是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.10、D【解析】根据正比例函数图象与系数的关系列出关于k的不等式k+10,然后解不等式即可【详解】解:正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,k+10,解得,k-1;故选D【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系k0时,直线必经过一、三象限,y随x的增大而增大;k0时,直线必经过二、四象限,y随x的
15、增大而减小二、填空题(共7小题,每小题3分,满分21分)11、【解析】先利用旋转的性质得到BCBD,CEDB,AE,CBDABE,再利用等腰三角形的性质和三角形内角和定理证明ABDA,则BDAD,然后证明BDCABC,则利用相似比得到BC:ABCD:BC,即BF:(AFBF)AF:BF,最后利用解方程求出AF与BF的比值.【详解】如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,BCBD,CEDB,AE,CBDABE,ABEADF,CBDADF,DBBF,BFBDBC,而CEDB,CBDABD,ABCC2ABD,BDCAABD,ABDA,BDAD,CDAF,ABAC,ABCCBDC,BD
16、CABC,BC:ABCD:BC,即BF:(AFBF)AF:BF,整理得AF2BFAFBF20,AFBF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.12、x11,x21【解析】直接观察图象,抛物线与x轴交于1,对称轴是x1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程x2+bx+c0的解【详解】解:观察图象可知,抛物线yx2+bx+c与x轴的一个交点为(1,0),对称轴为x1,抛物线与x轴的另一交点坐标为(1,0),一元二次方程x2+bx+c0的解为x1
17、1,x21故本题答案为:x11,x21【点睛】本题考查了二次函数与一元二次方程的关系一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值13、3【解析】圆锥的母线长是5cm,侧面积是15cm2,圆锥的侧面展开扇形的弧长为:l=6,锥的侧面展开扇形的弧长等于圆锥的底面周长,r=3cm,14、1【解析】根据已知DEBC得出=进而得出BC的值【详解】DEBC,AD6,BD2,DE3,ADEABC,BC1,故答案为1【点睛】此题考查了平行线分线段成比例的性质,解题的关键在于利用三角形的相似求三角形的边长.15、1【解析】试题分析:因为2+24,所以等腰三角形的腰
18、的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系16、44【解析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角形的性质解答即可【详解】连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,OAB=22,OAB=OBA=22,APO=CBP=68,APO=CPB,CPB=ABP=68,OCB=180-68-68=44,故答案为44【点睛】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用17
19、、y=【解析】解:设这个反比例函数的表达式为y=P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,x1y1=x2y2=k,=,=,=,=,k=2(x2x1)x2=x1+2,x2x1=2,k=22=4,这个反比例函数的解析式为:y=故答案为y=点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数同时考查了式子的变形三、解答题(共7小题,满分69分)18、见解析【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集在数轴上表示出来即可.【详解】解:去分母,得 3x164x2,移项,得:3x4x25,
20、合并同类项,得x3,系数化为1,得 x3,不等式的解集在数轴上表示如下:【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.19、10【解析】试题分析:如图:过点C作CDAB于点D,在RtACD中,利用ACD的正切可得AD=0.625CD,同样在RtBCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CDAB于点D,由已知可得:ACD=32,BCD =37,在RtACD中,ADC=90,AD=CDtanACD=CDtan32=0.625CD,在RtBCD中,BDC=90,BD=CDtanBCD=CD
21、tan37=0.755CD,AB=BD-CD=780,0.755CD-0.625CD=780,CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.20、海里【解析】过点P作,则在RtAPC中易得PC的长,再在直角BPC中求出PB【详解】解:如图,过点P作,垂足为点C.,海里.在中,(海里)在中,(海里).此时轮船所在的B处与灯塔P的距离是海里【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线21、 (1) ,点D的坐标为(2,-8) (2) 点F的
22、坐标为(7,)或(5,)(3) 菱形对角线MN的长为或. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,FAB=EDB, tanFAG=tanBDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)OB=OC=1,B(1,0),C(0,-1).,解得,抛物线的解析式为. =,点D的坐标为(2,-8). (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FGx轴于点G,易求得OA=2,则AG=x+2,FG=.FAB=EDB,tanFAG=tanBDE,即,解得,(舍去).当x=7时,y=,点F的坐标为(7,).
23、 当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,). (3)点P在x轴上,根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.PQ=MN,MT=2PT.设TP=n,则MT=2n. M(2+2n,n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.综上所述,菱形对角线MN的长为或. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,yax2bxc().列方程组求二次函数
24、解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.22、米【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB和AC的长度即可,根据题目中的条件可以求得AB和AC的长度,即可得到结论试题解析:解:ABEF,DEEF,ABC=90,ABDE,FABFDE, ,FB=4米,BE=6米,DE=9米,得AB=3.6米,A
25、BC=90,BAC=53,cosBAC=,AC= =6米,AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答23、(1)30;(2)当x3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【解析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为
26、:30027030千米;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题【详解】解:(1)根据图象信息:货车的速度V货,轿车到达乙地的时间为货车出发后4.5小时,轿车到达乙地时,货车行驶的路程为:4.560270(千米),此时,货车距乙地的路程为:30027030(千米)所以轿车到达乙地后,货车距乙地30千米故答案为30;(2)设CD段函数解析式为ykx+b(k0)(2.5x4.5)C(2.5,80),D(4.5,300)在其图象上,解得,CD段函数解析式:y110x195(2.5x4.5);易得OA:y60x,解得,当x3.9时,轿车与货
27、车相遇;(3)当x2.5时,y货150,两车相距150807020,由题意60x(110x195)20或110x19560x20,解得x3.5或4.3小时答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时【点睛】本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程速度时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键24、 (1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行)【解析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得【详解】解:(1)如图所示,直线AP即为所求(2)证明:ABAC,ABCACB(等边对等角),DAC是ABC的外角,DACABC+ACB(三角形外角性质),DAC2ABC,AP平分DAC,DAC2DAP,DAPABC,APl(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行)【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定
限制150内