2023届山东省济宁梁山县联考中考三模数学试题含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023届山东省济宁梁山县联考中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省济宁梁山县联考中考三模数学试题含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分BAD,分别交BC、BD于点E、P,连
2、接OE,ADC=60,AB=BC=1,则下列结论:CAD=30BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是()A2B3C4D52如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sinAOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则AOF的面积等于( )A30B40C60D803关于的一元二次方程有两个不相等的实数根,则实数的取值范围是ABCD4定义:如果一元二次方程ax2+bx+c=0(a0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a0)满足ab+c
3、=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A方有两个相等的实数根B方程有一根等于0C方程两根之和等于0D方程两根之积等于05若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak5Bk56 “a是实数,”这一事件是( )A不可能事件B不确定事件C随机事件D必然事件7如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD8如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点
4、同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD19将弧长为2cm、圆心角为120的扇形围成一个圆锥的侧面,则这个圆锥的高是()A cmB2 cmC2cmD cm10以坐标原点为圆心,以2个单位为半径画O,下面的点中,在O上的是()A(1,1)B(,)C(1,3)D(1,)11若,则( )ABCD12对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A60,的补角120,B90,的补角90,C100,的补角80,D两个角互为邻补角二、填空题:(本大题共6个小题,每小题4分,共24分)13百子回归图是由 1,2,3
5、,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归14已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为_15化简: =_16因式分解: 17将2.05103用小数表示为_18已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示
6、,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)20(6分)解不等式组请结合题意填空,完成本题的解答(1)解不等式,得_.(2)解不等式,得_.(3)把不等式和的解集在数轴上表示出来:(4)原不等式组的解集为_.21(6分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200
7、元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠22(8分)如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3)(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1
8、;(2)将ABC绕原点O逆时针旋转90后得到A2B2C2,请画出A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状(无须说明理由)23(8分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(1,1),B(1,1),C(1,1),D(1,1).(1)在,中,正方形ABCD的“关联点”有_;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直
9、线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.24(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积25
10、(10分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O连接OA、OB、OC、ODOE是边CD的中线,且AOB+COD180(1)如图2,当ABO是等边三角形时,求证:OEAB;(2)如图3,当ABO是直角三角形时,且AOB90,求证:OEAB;(3)如图4,当ABO是任意三角形时,设OAD,OBC,试探究、之间存在的数量关系?结论“OEAB”还成立吗?若成立,请你证明;若不成立,请说明理由26(12分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE
11、,求tanABD的值27(12分)如图,在ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与O相交于点F若的长为,则图中阴影部分的面积为_参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】先根据角平分线和平行得:BAE=BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:ABE是等边三角形,由外角的性质和等腰三角形的性质得:ACE=30,最后由平行线的性质可作判断;先根据三角形中位线定理得:OE=AB=,OEAB,根据勾股定理计算OC=和OD的长,可得BD的长
12、;因为BAC=90,根据平行四边形的面积公式可作判断;根据三角形中位线定理可作判断;根据同高三角形面积的比等于对应底边的比可得:SAOE=SEOC=OEOC=,代入可得结论【详解】AE平分BAD,BAE=DAE,四边形ABCD是平行四边形,ADBC,ABC=ADC=60,DAE=BEA,BAE=BEA,AB=BE=1,ABE是等边三角形,AE=BE=1,BC=2,EC=1,AE=EC,EAC=ACE,AEB=EAC+ACE=60,ACE=30,ADBC,CAD=ACE=30,故正确;BE=EC,OA=OC,OE=AB=,OEAB,EOC=BAC=60+30=90,RtEOC中,OC=,四边形A
13、BCD是平行四边形,BCD=BAD=120,ACB=30,ACD=90,RtOCD中,OD=,BD=2OD=,故正确;由知:BAC=90,SABCD=ABAC,故正确;由知:OE是ABC的中位线,又AB=BC,BC=AD,OE=AB=AD,故正确;四边形ABCD是平行四边形,OA=OC=,SAOE=SEOC=OEOC=,OEAB,SAOP= SAOE=,故正确;本题正确的有:,5个,故选D【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关
14、系2、B【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出结论【详解】过点A作AMx轴于点M,如图所示设OA=a,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a,a)点A在反比例函数y=的图象上,aa=a2=48,解得:a=1,或a=-1(舍去)AM=8,OM=6,OB=OA=1四边形OACB是菱形,点F在边BC上,SAOF=S菱形OBCA=OBAM=2故
15、选B【点睛】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出SAOF=S菱形OBCA3、A【解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可【详解】关于x的一元二次方程x23x+m=0有两个不相等的实数根,=b24ac=(3)241m0,m,故选A【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式的关系,即:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根4、C【解析】试题分析:根据已知得出方程ax2+bx+c=0(a0)有两个根x=1和x=1,再判断即可解:
16、把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=1代入方程ax2+bx+c=0得出ab+c=0,方程ax2+bx+c=0(a0)有两个根x=1和x=1,1+(1)=0,即只有选项C正确;选项A、B、D都错误;故选C5、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B6、D【解析】是实数,|一定大于等于0,是必然事件,故选D.7、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,B
17、CAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分8、B【解析】分析:由于点P在运动中保持APD=90,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的
18、知识得出点P的运动轨迹9、B【解析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2=,解得R=3cm;设圆锥底面半径为rcm,则2=2r,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.10、B【解析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为2,因此点在圆外D选项(1,) 到坐标原点的距离为2,因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 山东省 济宁 梁山县 联考 中考 数学试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内