《2023届安徽省安庆市桐城市达标名校中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省安庆市桐城市达标名校中考数学模拟试题含解析.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,等腰ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数2,
2、2,则AC的长度为()A2B4C2D42如图,在RtABC中,ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为()ABCD3下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD4将抛物线y2x2向左平移3个单位得到的抛物线的解析式是( )Ay2x2+3By2x23Cy2(x+3)2Dy2(x3)25如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A30,28 B26,26 C31,30 D26,226如图,已知菱形ABCD的对角线ACBD的长分别为
3、6cm、8cm,AEBC于点E,则AE的长是()ABCD7如图是二次函数y=ax2+bx+c的图象,有下列结论:ac1;a+b1;4acb2;4a+2b+c1其中正确的个数是()A1个B2个C3个D4个8若2mn6,则代数式m-n+1的值为()A1B2C3D49实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab10把四张形状大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示则图中两块阴影部分周长和是( )ABCD11如图,在ABC中,点D在BC上,DEAC
4、,DFAB,下列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90,则四边形AEDF是矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形12下列二次根式,最简二次根式是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_.14在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱通过大量重复摸球试验后发现,摸
5、到红球的频率稳定在0.25,那么可以推算出a大约是_.15函数的自变量的取值范围是16从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是_17如图,在等腰中,点在以斜边为直径的半圆上,为的中点当点沿半圆从点运动至点时,点运动的路径长是_18两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点作交直线于点,连接(1)由题意
6、易知,观察图,请猜想另外两组全等的三角形 ; ;(2)求证:四边形是平行四边形;(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由20(6分)如图,已知A=B,AE=BE,点D在AC边上,1=2,AE与BD相交于点O求证:EC=ED21(6分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.22(8分)已知是的函数,自变量的取值范围是的全体
7、实数,如表是与的几组对应值小华根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是2时,函数值是 ;(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出时所对应的点,并写出 (4)结合函数的图象,写出该函数的一条性质: 23(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座
8、杆CE的长为20cm点A、C、E在同一条直线上,且CAB=75(参考数据:sin75=0.966,cos75=0.259,tan75=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm)24(10分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作MECD于点E,1=1(1)若CE=1,求BC的长;(1)求证:AM=DF+ME25(10分)解方程(2x+1)2=3(2x+1)26(12分)已知如图,直线y= x+4 与x轴相交于点A,与直线y= x相交于点P(1)求点P的坐标;(2)动点E从原点O出发,沿着OPA的路线向点A
9、匀速运动(E不与点O、A重合),过点E分别作EFx轴于F,EBy轴于B设运动t秒时, F的坐标为(a,0),矩形EBOF与OPA重叠部分的面积为S直接写出: S与a之间的函数关系式(3)若点M在直线OP上,在平面内是否存在一点Q,使以A,P,M,Q为顶点的四边形为矩形且满足矩形两边AP:PM之比为1: 若存在直接写出Q点坐标。若不存在请说明理由。27(12分)如图,BAO=90,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90(2)若m=4,求BE的长(3)
10、在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据等腰三角形的性质和勾股定理解答即可【详解】解:点A,D分别对应数轴上的实数2,2,AD4,等腰ABC的底边BC与底边上的高AD相等,BC4,CD2,在RtACD中,AC,故选:C【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理2、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可【详解】由旋转可知AD=BD
11、,ACB=90,AC=2,CD=BD,CB=CD,BCD是等边三角形,BCD=CBD=60,BC=AC=2,阴影部分的面积=222=2.故答案选:B.【点睛】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.3、D【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对
12、称中心,旋转180度后两部分重合4、C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y2x2向左平移3个单位得到的抛物线的解析式是y2(x3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.5、B【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1平均数是(222+23+1+28+30+31)7=1,所以平均数是1故选B考点:中位数;加权平均数6、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出B
13、C,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分7、C【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:根据图示知,该函数图象的开口向上,a1;该函数图象交于y轴的负半轴,c1;故正确;对称轴 b1;故正确;根据图示知,二次函数与x轴有两个
14、交点,所以,即,故错误故本选项正确正确的有3项故选C【点睛】本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置8、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.9、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0,a+b0,根据绝对值的性质化简计算【详解】由数轴可知,ba0c,c-a0,a+b0,则|c-a|-|a+b
15、|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键10、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键11、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确
16、;B选项,四边形AEDF是平行四边形,BAC=90,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,ADBC”可证明AD平分BAC,从而可通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.12、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符
17、合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式二、填空题:(本大题共6个小题,每小题4分,共24分)13、小林【解析】观察图形可知,小林的成绩波动比较大,故小林是新手故答案是:小林14、12【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可【详解】摸到红球的频率稳定在0.25, 解得:a=12故答案为
18、:12【点睛】此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率15、x1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X10,即x1那么函数y=的自变量的取值范围是x116、【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.17、【解析】取的中点,取的中点,连接,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.【详解】解:如图,
19、取的中点,取的中点,连接,在等腰中,点在以斜边为直径的半圆上,为的中位线,当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,弧长,故答案为:.【点睛】本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.18、4或1【解析】两圆内切,一个圆的半径是6,圆心距是2,另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1【点睛】本题考查了根据两圆位置关系来求圆的半径的方法注意圆的半径是6,要分大圆和小圆两种情况讨论三、解答题:(本大题共9个小题,共78分,解答应
20、写出文字说明、证明过程或演算步骤19、(1);(2)见解析;(3)存在,2【解析】(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知,则有,从而得到,最后利用一组对边平行且相等即可证明;(3)由(1)可知,则,从而得到是等腰直角三角形,则当最短时,的面积最小,再根据AB的值求出PB的最小值即可得出答案【详解】解:(1)四边形是正方形,在和中,在和中,故答案为;(2)证明:由(1)可知,四边形是平行四边形.(3)解:存在,理由如下:是等腰直角三角形,最短时,的面积最小,当时,最短,此时,的面积最小为.【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等
21、三角形的判定方法和平行四边形的判定方法是解题的关键20、见解析【解析】由1=2,可得BED=AEC,根据利用ASA可判定BEDAEC,然后根据全等三角形的性质即可得证.【详解】解:1=2,1+AED=2+AED,即BED=AEC,在BED和AEC中,BEDAEC(ASA),ED=EC【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键21、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代
22、入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴
23、为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用22、(1);(2)见解析;(3);(4)当时,随的增大而减小【解析】(1)根据表中,的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解【详解】解:(1)当自变量是2时,函数值是;故答案为:.(2)该函数的图象如图所
24、示;(3)当时所对应的点 如图所示,且;故答案为:;(4)函数的性质:当时,随的增大而减小故答案为:当时,随的增大而减小【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:有两个变量;一个变量的数值随着另一个变量的数值的变化而发生变化;对于自变量的每一个确定的值,函数值有且只有一个值与之对应23、63cm.【解析】试题分析:(1)在Rt ACD,AC45,DC60,根据勾股定理可得AD 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AEAC+CE,在直角 EFA中,根据EFAEsin75可求出EF的长度,即为点E到车架档AB的距离;试题解析:24、 (1)1;(1)见解析.【
25、解析】试题分析:(1)根据菱形的对边平行可得ABCD,再根据两直线平行,内错角相等可得1=ACD,所以ACD=1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(1)先利用“边角边”证明CEM和CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明1=G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明CDF和BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证试题解析:(1)四边形ABCD是菱形,ABCD,1=ACD,1=1,ACD=1,M
26、C=MD,MECD,CD=1CE,CE=1,CD=1,BC=CD=1;(1)AM=DF+ME证明:如图,F为边BC的中点, BF=CF=BC,CF=CE,在菱形ABCD中,AC平分BCD,ACB=ACD,在CEM和CFM中,CEMCFM(SAS),ME=MF,延长AB交DF的延长线于点G,ABCD,G=1,1=1,1=G,AM=MG,在CDF和BGF中,CDFBGF(AAS),GF=DF,由图形可知,GM=GF+MF,AM=DF+ME25、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:
27、(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大26、(1); (2);(3)【解析】(1)联立两直线解析式,求出交点P坐标即可;(2)由F坐标确定出OF的长,得到E的横坐标为a,代入直线OP解析式表示出E纵坐标,即为EF的长,分两种情况考虑:当时,矩形EBOF与三角形OPA重叠部分为直角三角形OEF,表示出三角形OEF面积S与a的函数关系式;当时,重合部分为直角梯形面积,求出S与a函
28、数关系式.(3)根据(1)所求,先求得A点坐标,再确定AP和PM的长度分别是2和2,又由OP=2,得到P怎么平移会得到M,按同样的方法平移A即可得到Q.【详解】解:(1)联立得:,解得:;P的坐标为;(2)分两种情况考虑:当时,由F坐标为(a,0),得到OF=a,把E横坐标为a,代入得:即此时 当时,重合的面积就是梯形面积,F点的横坐标为a,所以E点纵坐标为 M点横坐标为:-3a+12, 所以;(3)令中的y=0,解得:x=4,则A的坐标为(4,0)则AP= ,则PM=2又OP= 点P向左平移3个单位在向下平移可以得到M1点P向右平移3个单位在向上平移可以得到M2A向左平移3个单位在向下平移可
29、以得到 Q1(1,-)A向右平移3个单位在向上平移可以得到 Q1(7,)所以,存在Q点,且坐标是【点睛】本题考查一次函数综合题、勾股定理以及逆定理、矩形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题27、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点
限制150内