2023届内蒙古乌兰察布市北京八中学分校中考二模数学试题含解析.doc
《2023届内蒙古乌兰察布市北京八中学分校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古乌兰察布市北京八中学分校中考二模数学试题含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,一次函数yx1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若ACBC,则点C的坐标为()A(0,1)B(0,2)CD(0,3)2罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很
2、大如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD3在实数,中,其中最小的实数是()ABCD4已知点、都在反比例函数的图象上,则下列关系式一定正确的是( )ABCD5如图,ABC内接于半径为5的O,圆心O到弦BC的距离等于3,则A的正切值等于( )A B C D6二次函数y=ax+
3、bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x-1013y 33下列结论:(1)abc0(2)当x1时,y的值随x值的增大而减小;(3)16a+4b+c0(4)x=3是方程ax+(b-1)x+c=0的一个根;其中正确的个数为( )A4个B3个C2个D1个7如图,在RtABC中,ACB=90,点D,E分别是AB,BC的中点,点F是BD的中点若AB=10,则EF=()A2.5B3C4D58如果m的倒数是1,那么m2018等于()A1B1C2018D20189“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件10如果(,均为非零向量),
4、那么下列结论错误的是()A/B-2=0C=D11小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图根据图中信息,下列说法:这栋居民楼共有居民140人每周使用手机支付次数为2835次的人数最多有的人每周使用手机支付的次数在3542次每周使用手机支付不超过21次的有15人其中正确的是( )ABCD12我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻将423公里用科学记数法表示应为()米A42.3104B4.23102C4.23105D4.23106二、填空题:(本大题共6个
5、小题,每小题4分,共24分)13已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .14有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则,y2=_,第n次的运算结果yn=_(用含字母x和n的代数式表示)15观察下列一组数,探究规律,第n个数是_16若是关于的完全平方式,则_17如图,等腰ABC中,ABAC5,BC8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D当ACF是直角三角形时,BD的长为_18甲、乙、丙3名学生随机排成一排拍照,其中甲排
6、在中间的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x0)的图象上,点A与点A关于点O对称,一次函数y2=mx+n的图象经过点A(1)设a=2,点B(4,2)在函数y1、y2的图象上分别求函数y1、y2的表达式;直接写出使y1y20成立的x的范围;(2)如图,设函数y1、y2的图象相交于点B,点B的横坐标为3a,AAB的面积为16,求k的值;(3)设m=,如图,过点A作ADx轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一
7、定在函数y1的图象上20(6分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF(1)说明BEF是等腰三角形;(2)求折痕EF的长21(6分)计算: .22(8分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域(菱形),区域(4个全等的直角三角形),剩余空白部分记为区域;点为矩形和菱形的对称中心,为了美观,要求区域的面积不超过矩形面积的,若设米.甲乙丙单价(元/米2)(1)当时,求区域的面积.计划在区域,分别铺设甲,乙两款不同的深色瓷砖,区域铺设丙款白色瓷砖,在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越
8、好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时_,_.23(8分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为
9、何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由24(10分)如图,AB为O的直径,点D、E位于AB两侧的半圆上,射线DC切O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且AED45求证:CDAB;填空:当DAE 时,四边形ADFP是菱形;当DAE 时,四边形BFDP是正方形25(10分)如图,已知O,请用尺规做O的内接正四边形ABCD,(保留作图痕迹,不写做法)26(12分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一
10、个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40a100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?27(12分)已知:如图,MNQ中
11、,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,B=D求证:CD=AB参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题【详解】由,解得 或,A(2,1),B(1,0),设C(0,m),BC=AC,AC2=BC2,即4+(m-1)2=1+m2,m=2,故答案为(0,2)【点睛】本题考查了反比例函数与一次函数的
12、交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题2、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:4115000.822,但“罚球命中”的概率不一定是0.822,故错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键
13、在于利用频率估计概率.3、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小4、A【解析】分析:根据反比例函数的性质,可得答案详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,36,x1x20,故选A点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键5、C.【解析】试题分析:如答图,过点O作ODBC,垂足为
14、D,连接OB,OC,OB=5,OD=3,根据勾股定理得BD=4.A=BOC,A=BOD.tanA=tanBOD=.故选D考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义6、B【解析】(1)利用待定系数法求出二次函数解析式为y=-x2+x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确【详解】(1)x=-1时y=-,x=0时,y=3,x=1时,y=,解得abc0,故正确;(2)y=-x2+x+3,对称轴为直线x=-=,所以,当x时,y的值
15、随x值的增大而减小,故错误;(3)对称轴为直线x=,当x=4和x=-1时对应的函数值相同,16a+4b+c0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4)故选:B【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键7、A【解析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】ACB=90,D为AB中点CD=点E、F分别为BC、BD中点.故答案为:A.【点睛】本
16、题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.8、A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.9、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件10、B【解析】试题解析:向量最后的差应该还是向量. 故错误.故选B.11、B【解析】根据直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 内蒙古 乌兰察布 北京 中学 分校 中考 数学试题 解析
限制150内