《2023届吉林省白山市长白县中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省白山市长白县中考数学仿真试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1数据3、6、7、1、7、2、9的中位数和众数分别是()A1和7B1和9C6和7D6和92对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是63如果一个正多边形内角和等于1080,那么这个正多边形的每一个外角等于()ABCD4一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD5如图,OABOCD,OA:OC3:2,A
3、,C,OAB与OCD的面积分别是S1和S2,OAB与OCD的周长分别是C1和C2,则下列等式一定成立的是()ABCD6在-,0,2这四个数中,最小的数是( )ABC0D27下列图标中,是中心对称图形的是()ABCD8为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点C
4、D监测点D9如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB1,CD3,那么EF的长是( )ABCD10把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则APG()A141B144C147D15011如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD12利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD二、填空题:(本大题共6个小
5、题,每小题4分,共24分)13如图,设ABC的两边AC与BC之和为a,M是AB的中点,MCMA5,则a的取值范围是_14今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_15对于实数a,b,定义运算“*”:a*b=,例如:因为42,所以4*2=4242=8,则(3)*(2)=_.16不等式2x57(x5)的解集是_.17如图,菱形ABCD中,AB=4,C=60,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_18计算:2sin245tan45_三、解答题
6、:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简代数式:,再代入一个你喜欢的数求值.20(6分)如图,在中,,于, .求的长;.求 的长. 21(6分)如图,已知ABC=90,AB=BC直线l与以BC为直径的圆O相切于点C点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D如果BE=15,CE=9,求EF的长;证明:CDFBAF;CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由22(8分)计算:4sin30+(1)0|2|+()223(8分)(1)计算:;(2)先化简
7、,再求值:,其中a=24(10分) (1)计算:(2)先化简,再求值:,其中x是不等式的负整数解.25(10分)如图,AB为O的直径,点D、E位于AB两侧的半圆上,射线DC切O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且AED45求证:CDAB;填空:当DAE 时,四边形ADFP是菱形;当DAE 时,四边形BFDP是正方形26(12分)如图,在图中求作P,使P满足以线段MN为弦且圆心P到AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)27(12分)已知ABC中,D为AB边上任意
8、一点,DFAC交BC于F,AEBC,CDE=ABCACB,(1)如图1所示,当=60时,求证:DCE是等边三角形;(2)如图2所示,当=45时,求证:=;(3)如图3所示,当为任意锐角时,请直接写出线段CE与DE的数量关系:_. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数【详解】解:7出现
9、了2次,出现的次数最多,众数是7;从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,中位数是6故选C【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义2、D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(14)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均
10、数;1.方差;4.中位数.3、A【解析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360,即可求得答案【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,这个正多边形的每一个外角等于:3608=45故选A【点睛】此题考查了多边形的内角和与外角和的知识注意掌握多边形内角和定理:(n-2)180,外角和等于3604、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有
11、第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.5、D【解析】A选项,在OABOCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在OABOCD中,A和C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.6、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1
12、故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.7、B【解析】根据中心对称图形的概念 对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合8、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,
13、然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选9、C【解析】易证DEFDAB,BEFBCD,根据相似三角形的性质可得= ,=,从而可得+=+=1然后把AB=1,CD=3代入即可求出EF的值【详解】AB、CD、EF都与BD垂直,ABCDEF,DEFDAB,BEFBCD,= ,=,+=+=1.AB=1,CD=3,+=1,EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.10、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)1806120,(5
14、2)1805108,APG(62)18012031082720360216144,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)11、B【解析】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B12、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分
15、析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.二、填空题:(本大题共6个小题,每小题4分,共24分)13、10a10【解析】根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程
16、组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围【详解】M是AB的中点,MC=MA=5,ABC为直角三角形,AB=10;a=AC+BCAB=10;令AC=x、BC=y,xy=,x、y是一元二次方程z2-az+=0的两个实根,=a2-40,即a10综上所述,a的取值范围是10a10故答案为10a10【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点14、3.03101【解析】分析:科学记数法的表示形式为a10n的形式,其中1
17、|a|10,n为整数确定n的值是易错点,由于303000有6位整数,所以可以确定n=6-1=1详解:303000=3.03101,故答案为:3.03101点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n的值是解题的关键15、-1【解析】解:-3-2,(-3)*(-2)=(-3)-(-2)=-1故答案为-116、x【解析】解:去括号得:2x57x+5,移项、合并得:3x17,解得:x故答案为:x17、【解析】第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60第三次就是以点
18、B为旋转中心,OB为半径,旋转的圆心角为60度旋转到此菱形就又回到了原图故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长【详解】解:菱形ABCD中,AB=4,C=60,ABD是等边三角形, BO=DO=2,AO=,第一次旋转的弧长=,第一、二次旋转的弧长和=+=,第三次旋转的弧长为:,故经过6次这样的操作菱形中心O所经过的路径总长为:2(+)=故答案为:【点睛】本题考查菱形的性质,翻转的性质以及解直角三角形的知识18、0【解析】原式=0,故答案为0.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】先根据
19、分式的运算法则进行化简,再代入使分式有意义的值计算.【详解】解:原式.使原分式有意义的值可取2,当时,原式.【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.20、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).在中,.,(2).,即,201525CD.21、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得BCE=90,BFC=CFE=90,则可证得CEFBEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)由FCD+FBC
20、=90,ABF+FBC=90,根据同角的余角相等,即可得ABF=FCD,同理可得AFB=CFD,则可证得CDFBAF;由CDFBAF与CEFBCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC= CD=CE,然后在RtBCE中,求得tanCBE的值,即可求得CBE的度数,则可得F在O的下半圆上,且.【详解】(1)解:直线l与以BC为直径的圆O相切于点CBCE=90,又BC为直径,BFC=CFE=90,FEC=CEB,CEFBEC,BE=15,CE=9,即:,解得:EF= ;(2)证明:FCD+FBC=90,ABF+FBC=90,ABF=
21、FCD,同理:AFB=CFD,CDFBAF;CDFBAF,又FCE=CBF,BFC=CFE=90,CEFBCF,又AB=BC,CE=CD;(3)解:CE=CD,BC=CD=CE,在RtBCE中,tanCBE=,CBE=30,故 为60,F在直径BC下方的圆弧上,且【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识此题综合性很强,解题的关键是方程思想与数形结合思想的应用22、1.【解析】按照实数的运算顺序进行运算即可.【详解】原式 =1【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.2
22、3、(1)2016;(2)a(a2),【解析】试题分析:(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可试题解析:(1)原式=2016;(2)原式=a(a2),当a=时,原式=24、(1)5;(2),3.【解析】试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;(2)先化简,再求得x的值,代入计算即可试题解析:(1)原式121245;(2)原式,当3x71,即 x2时的负整数时,(x1)时,原式3.25、(1)
23、详见解析;(2)67.5;90【解析】(1)要证明CDAB,只要证明ODFAOD即可,根据题目中的条件可以证明ODFAOD,从而可以解答本题;(2)根据四边形ADFP是菱形和菱形的性质,可以求得DAE的度数;根据四边形BFDP是正方形,可以求得DAE的度数【详解】(1)证明:连接OD,如图所示,射线DC切O于点D,ODCD,即ODF90,AED45,AOD2AED90,ODFAOD,CDAB;(2)连接AF与DP交于点G,如图所示,四边形ADFP是菱形,AED45,OAOD,AFDP,AOD90,DAGPAG,AGE90,DAO45,EAG45,DAGPEG22.5,EADDAG+EAG22.
24、5+4567.5,故答案为:67.5;四边形BFDP是正方形,BFFDDPPB,DPBPBFBFDFDP90,此时点P与点O重合,此时DE是直径,EAD90,故答案为:90【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答26、见解析【解析】试题分析:先做出AOB的角平分线,再求出线段MN的垂直平分线就得到点P试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质27、1【解析】试题分析:(1)证明CFDDAE即可解决问题(2)如图2中,作FGAC于G只要证明CFDDAE,推出=,再证明CF=AD
25、即可(3)证明EC=ED即可解决问题试题解析:(1)证明:如图1中,ABC=ACB=60,ABC是等边三角形,BC=BADFAC,BFD=BCA=60,BDF=BAC=60,BDF是等边三角形,BF=BD,CF=AD,CFD=120AEBC,B+DAE=180,DAE=CFD=120CDA=B+BCD=CDE+ADECDE=B=60,FCD=ADE,CFDDAE,DC=DECDE=60,CDE是等边三角形 (2)证明:如图2中,作FGAC于GB=ACB=45,BAC=90,ABC是等腰直角三角形DFAC,BDF=BAC=90,BFD=45,DFC=135AEBC,BAE+B=180,DFC=DAE=135CDA=B+BCD=CDE+ADECDE=B=45,FCD=ADE,CFDDAE,=四边形ADFG是矩形,FC=FG,FG=AD,CF=AD,=(3)解:如图3中,设AC与DE交于点O AEBC,EAO=ACBCDE=ACB,CDO=OAECOD=EOA,CODEOA,=,=COE=DOA,COEDOA,CEO=DAOCED+CDE+DCE=180,BAC+B+ACB=180CDE=B=ACB,EDC=ECD,EC=ED,=1点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题
限制150内