2023届北京市昌平二中学南校区重点名校中考数学猜题卷含解析.doc
《2023届北京市昌平二中学南校区重点名校中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届北京市昌平二中学南校区重点名校中考数学猜题卷含解析.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为
2、,则随机摸出一个黄球的概率为()ABCD2去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A1.23106B1.23107C0.123107D12.31053若关于x的一元二次方程ax2+2x5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )Aa3 Ba3 Ca3 Da34如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A5B4C3D25将抛物线y(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A向下平移3个单位B向上平移3个单位C向左平移4个单位D向右
3、平移4个单位6如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米7过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()ABCD8太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A11B8C7D59在一个直角三角形中,有一个锐角等于45,则另一个锐角的度数是()A75B60C
4、45D3010式子有意义的x的取值范围是( )A且x1Bx1CD且x111下列图形中,不是中心对称图形的是()A平行四边形B圆C等边三角形D正六边形12若抛物线ykx22x1与x轴有两个不同的交点,则k的取值范围为()Ak1Bk1Ck1且k0Dk1且k0二、填空题:(本大题共6个小题,每小题4分,共24分)13若一元二次方程有两个不相等的实数根,则k的取值范围是 14如图,矩形中,将矩形沿折叠,点落在点处.则重叠部分的面积为_.15某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10,则该商品每件的进价为_元16如图,RtABC中,ACB=90,D为AB的中点,F为CD上一
5、点,且CF=CD,过点B作BEDC交AF的延长线于点E,BE=12,则AB的长为_17如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tanAPD的值为_.18如图,ABC中,AD是中线,BC=8,B=DAC,则线段 的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) (1)计算:(ab)2a(a2b); (2)解方程:20(6分)一艘观光游船从港口A以北偏东60的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的
6、北偏东37方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)21(6分)(1)计算:|3|2sin30+()2(2)化简:.22(8分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x0)元,让利后的购物金额为y元(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这
7、两家商场去购物会更省钱?并说明理由23(8分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AGCG24(10分)如图,在ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CFAB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.25(10分)如图,ABCD的对角线AC,BD相交于点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由26(12分)“十九大”报告提出了我国将加大治理
8、环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表对雾霾了解程度的统计表 对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题:统计表中:m ,n ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?27(12分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数y的图象上(1)求反比例函数y的表达式;(2)在x轴上是否存在一点P,使得
9、SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键2、A【解析】分析:科学记数法的表示形式为的形式,其中为整数确定
10、的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,是负数详解:1230000这个数用科学记数法可以表示为 故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.3、B【解析】试题分析:当x=0时,y=5;当x=1时,y=a1,函数与x轴在0和1之间有一个交点,则a10,解得:a1考点:一元二次方程与函数4、C【解析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视
11、图,从上面看到的图形是俯视图,从左面看到的图形是左视图.5、A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.6、C【解析】试题解析:在RtABO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C考点:解直角三角形的应用-仰角俯角问题7、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形
12、与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.8、B【解析】根据等量关系,即(经过的路程3)1.6+起步价2元1列出不等式求解【详解】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x3)1.6+21,解得:x2即此人从甲地到乙地经过的路程最多为2km故选B【点睛】考查了一元一次方程的应用关键是掌握正确理解题意,找出题目中的数量关系9、C【解析】根据直角三角形两锐角互余即可解决问题.【详解】解:直角三角形两锐角互余,另一个锐角的度数=9045=45,故选C【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键10、A【解析】根据二次根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 北京市 昌平 中学 校区 重点 名校 中考 数学 猜题卷含 解析
限制150内