《2023届天津市南开大附属中学中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届天津市南开大附属中学中考数学四模试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )ABCD2如图,弹性小球从点P(0,1)出发,沿所
2、示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)3cos30=( )ABCD4如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A10B9C8D75如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )ABCD6小明乘出租车去体育场,有两条路线可供
3、选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达若设走路线一时的平均速度为x千米/小时,根据题意,得ABCD7二次函数yax2bxc(a0)的图象如图,下列结论正确的是() Aa0Bb24ac0C当1x0D=18如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D69关于x的一元一次不等式2的解集为x4,则m的值为( )A14B7C2D210如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D78二、填空题(本大
4、题共6个小题,每小题3分,共18分)11小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_12如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB的中点,ADO的面积为3,则k的值为_13如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是_.14如图,在ABC中,DEBC,BF平分ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=_15在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为
5、9m,那么这栋建筑物的高度为_m16满足的整数x的值是_三、解答题(共8题,共72分)17(8分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E求证:DE是O的切线求DE的长18(8分)如图,ABC中,C=90,A=30用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分CBA19(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C(1)求双曲线解析式;(2)点P在x轴上,如果ACP的面积为5,求点P的坐标.20(8分) “垃圾不落地,城市
6、更美丽”某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项要求每位被调查的学生必须从以上三项中选一项且只能选一项现将调查结果绘制成以下来不辜负不完整的统计图请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?21(8分)如图,抛物线y=-x2+bx+c
7、的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标22(10分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:a= %,并补全条形图在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?23
8、(12分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生20162017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图请根据图中提供的信息,回答下列问题:(1)a= %,并补全条形图(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?24某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图(1)D组的人数是 人,补全频数分布直方图,扇形图中m ;(
9、2)本次调查数据中的中位数落在 组;(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可【详解】解:根据图象,设函数解析式为由图象可知,顶点为(1,3),将点(0,0)代入得解得故答案为:D【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式2、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环
10、周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.3、C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.4、D【解析】分析:先根据多边形的内角和公式(n2)180求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360求出完成这一圆环需要的正五边形的个数,然后减去3即可得解详解:五边形的内角和为(52)180=540,正五边形的每
11、一个内角为5405=18,如图,延长正五边形的两边相交于点O,则1=360183=360324=36,36036=1已经有3个五边形,13=7,即完成这一圆环还需7个五边形 故选D 点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形5、B【解析】连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明BFC=90,最后利用勾股定理求得CF=【详解】连接BF,由折叠可知AE垂直平分BF,BC=6,点E为BC的中点,BE=3,又AB=4,AE=5,B
12、H=,则BF= ,FE=BE=EC,BFC=90,CF= 故选B【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键6、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程解:设走路线一时的平均速度为x千米/小时,故选A7、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:抛物线开口向上,A选项错误,抛物线与x轴有
13、两个交点, B选项错误,由图象可知,当1x3时,y0C选项错误,由抛物线的轴对称性及与x轴的两个交点分别为(1,0)和(3,0)可知对称轴为 即1,D选项正确,故选D.8、A【解析】作于利用直角三角形30度角的性质即可解决问题【详解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型9、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集为x4,m+3=4,解得m=1故选D考点:不等式
14、的解集10、C【解析】分析:由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案详解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选C点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:根据题意和图示,可知
15、所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.12、1【解析】过点B作BEx轴于点E,根据D为OB的中点可知CD是OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=,再由ADO的面积为1求出k的值即可得出结论解:如图所示,过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=3,()x=3,解得k=1,故答案为113、(,)【解析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,
16、即可求得E点的坐标【详解】解:正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,OA:OD=2:3,点A的坐标为(1,0),即OA=1,OD=,四边形ODEF是正方形,DE=OD=E点的坐标为:(,)故答案为:(,)【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键14、【解析】由DEBC可得出ADEABC,根据相似三角形的性质和平行线的性质解答即可【详解】DEBC,F=FBC,BF平分ABC,DBF=FBC,F=DBF,DB=DF,DEBC,ADEABC, ,即 ,解得:DE= ,DF=DB=2,EF=DF-DE=2- = ,故
17、答案为.【点睛】此题考查相似三角形的判定和性质,关键是由DEBC可得出ADEABC15、1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解详解:设这栋建筑物的高度为xm,由题意得,解得x=1,即这栋建筑物的高度为1m故答案为1点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想16、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键三、解答题(共8题,共72分)17、 (1)详见解析;(2)4.
18、【解析】试题分析:(1)连结OD,由AD平分BAC,OA=OD,可证得ODA=DAE,由平行线的性质可得ODAE,再由DEAC即可得OEDE,即DE是O的切线;(2)过点O作OFAC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,AD平分BAC,DAE=DAB,OA=OD,ODA=DAO,ODA=DAE,ODAE,DEACOEDEDE是O的切线;(2)过点O作OFAC于点F,AF=CF=3,OF=,OFE=DEF=ODE=90,四边形OFED是矩形,DE=OF=4.考点:切线的判定;垂径定理;勾股定理;
19、矩形的判定及性质.18、(1)作图见解析;(2)证明见解析【解析】(1)分别以A、B为圆心,以大于AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出ABD=A=30,然后求出CBD=30,从而得到BD平分CBA【详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:DE是AB边上的中垂线,A=30,AD=BD,ABD=A=30,C=90,ABC=90A=9030=60,CBD=ABCABD=6030=30,ABD=CBD,BD平
20、分CBA【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.19、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4
21、|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或20、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督【解析】(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;(2)根据众数的定义求解即可;(3)该年级学生中“经常随手丢垃圾”的学生=总人数C情况的比值.【详解】(1)被调查的总人数为6030%=200人,C情况的人数为200(60+130)=10人,B情况人数所占比例为100%=65%,补全图形如下:(2)由条形图知,B情况出
22、现次数最多,所以众数为B,故答案为B(3)15005%=75,答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督【点睛】本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.21、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况
23、,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQPEAD,PQEAQD,=1,PE=AD=1由-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线
24、上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1,P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键22、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用31
25、0乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为31010%=31,参加社会实践活动的天数为8天的人数是:10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000(25%+10%+5%+20%)=5400(人),活动时间
26、不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人【解析】(1)用1减去其他天数所占的百分比即可得到a的值,用310乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以
27、活动时间不少于1天的人数所占的百分比即可求出答案【详解】解:(1)扇形统计图中a=15%40%20%25%=10%,该扇形所对圆心角的度数为31010%=31,参加社会实践活动的天数为8天的人数是:10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1(3)根据题意得:9000(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)16、84;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)【解析】(1)根据百分比所长人数总人数,圆心角百分比,计算即可;(2)根据中位数的定义计算即可;(3)用一半估计总体的思考问题即可;【详解】(1)由题意总人数人,D组人数人;B组的圆心角为;(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人【点睛】本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
限制150内