《2023届山东省滨州市无棣县中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省滨州市无棣县中考数学考前最后一卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的
2、)1如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sinAOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删AOF的面积等于( )A10 B9 C8 D62如图,在边长为6的菱形中, ,以点为圆心,菱形的高为半径画弧,交于点,交于点,则图中阴影部分的面积是( )ABCD3下列计算正确的是()Ax4x4=x16 B(a+b)2=a2+b2C=4 D(a6)2(a4)3=14数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A点AB点BC点CD点D5化简的结果为( )A1B1CD6如图,在扇形CAB中,CA=4,CAB=120,D为CA的中点,P为弧BC上一动
3、点(不与C,B重合),则2PD+PB的最小值为()ABC10D7有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数下面的数据是记录结果,其中与标准质量最接近的是()A+2B3C+4D18如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )ABCD9已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,410在下列二次函数中,其图象的对称轴为的是ABCD11如图,ABCD,点E在线段BC上,CD=CE,若ABC=30,则D为()A85B75C60D3012如图,在平面直角坐标
4、系中,半径为2的圆P的圆心P的坐标为(3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A1B3C5D1或5二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,An,分别过这些点做x轴的垂线与反比例函数y的图象相交于点P1,P2,P3,P4,Pn,再分别过P2,P3,P4,Pn作P2B1A1P1,P3B2A2P2,P4B3A3P3,PnBn1An1Pn1,垂足分别为B1,B2,B3,B4,Bn1,连接P1P2,P2P3,P3P4,Pn1Pn,得到一组RtP1B1P2,RtP2B2P3,RtP3B3
5、P4,RtPn1Bn1Pn,则RtPn1Bn1Pn的面积为_14如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tanADN= 15如图,ABC与DEF位似,点O为位似中心,若AC3DF,则OE:EB_16计算:2cos60+(5)=_.17如图,矩形中,将矩形沿折叠,点落在点处.则重叠部分的面积为_.18计算的结果是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图是某旅游景点的一处台阶,其中台阶坡面AB和BC的长均为6m,AB部分的坡角BAD为45,BC部分的坡角CBE为30,其中BDAD,CEB
6、E,垂足为D,E现在要将此台阶改造为直接从A至C的台阶,如果改造后每层台阶的高为22cm,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm且不足22cm时,按一个台阶计算可能用到的数据:1.414,1.732)20(6分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)21(6分)如图,O是ABC的外接圆,AB
7、为直径,ODBC交O于点D,交AC于点E,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求tanDBC的值22(8分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?23(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工
8、程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?24(10分)已知关于x的方程x2(m2)x(2m1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。25(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大
9、致位于直线CD上 年龄组x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从 岁开始增加特别迅速(2)求直线AB所对应的函数表达式(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?26(12分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于
10、8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案27(12分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】 过点A作AMx轴于点M,过点F作FNx轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面
11、积,最终找出AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论解:过点A作AMx轴于点M,过点F作FNx轴于点N,如图所示设OA=a,BF=b,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a, a)点A在反比例函数y=的图象上,aa=a2=12,解得:a=5,或a=5(舍去)AM=8,OM=1四边形OACB是菱形,OA=OB=10,BCOA,FBN=AOB在RtBNF中,BF=b,sinFBN=,BNF=90,FN=BFsinFBN=b,BN=b,点F的坐标为(10+b,b)点F在反比例函数y=的图象上,(10+b
12、)b=12,SAOF=SAOM+S梯形AMNFSOFN=S梯形AMNF=10故选A“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出SAOF=S菱形OBCA.2、B【解析】由菱形的性质得出AD=AB=6,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可【详解】四边形ABCD是菱形,DAB=60,AD=AB=6,ADC=180-60=120,DF是菱形的高,DFAB,DF=ADsin60=6=3,阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=63=18-9故选B【点
13、睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键3、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.4、A【解析】根据绝对值的含义和求法,判断出绝对值等于2的数是2和2,据此判断出绝对值等于2的点是哪个点即可【详解】解:绝对值等于2的数是2和2,绝对值等于2的点是点A故选A【点睛】此题主要考查了绝对值的含义
14、和求法,要熟练掌握,解答此题的关键要明确:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数有理数的绝对值都是非负数5、B【解析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案【详解】解:故选B6、D【解析】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,推出APDABP,得到BP=2PD,于是得到2PD+PB=BP+PBPP,根据勾股定理得到PP=,求得2PD+PB4,于是得到结论【详解】如图,作PAP=120,则AP=2AB=8,连接PP,BP,则1=2,=2,APDABP,BP=2PD
15、,2PD+PB=BP+PBPP,PP=,2PD+PB4,2PD+PB的最小值为4,故选D【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键7、D【解析】试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件故选D8、C【解析】从数轴上可以看出a、b都是负数,且ab,由此逐项分析得出结论即可【详解】由数轴可知:ab0,A、两数相乘,同号得正,ab0是正确的;B、同号相加,取相同的符号,a+b0是正确的;C、ab0,故选项是错误的;D、a-b=a+(-b)取a的符
16、号,a-b0是正确的故选:C【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.9、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(35-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.10、A【解析】y=(x+2)2的对称轴为x=2,A正确;y=2x22的对称轴为x=0,B错误;y=2x22的对称轴为x=0,C错误;y=2(x2)2的对称轴为x=2,D错误故选A111、B【解析】分析:先由ABCD,得C=ABC=30,CD=CE,得D=CED,再根据三角形内角和定理得,C+D+CED=180,即30+2D=180,从而求出D详解:ABCD,C
17、=ABC=30,又CD=CE,D=CED,C+D+CED=180,即30+2D=180,D=75故选B点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出C,再由CD=CE得出D=CED,由三角形内角和定理求出D12、D【解析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用二
18、、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】解:设OA1A1A2A2A3An2An1An1Ana,当xa时,P1的坐标为(a,),当x2a时,P2的坐标为(2a,),RtP1B1P2的面积为,RtP2B2P3的面积为,RtP3B3P4的面积为,RtPn1Bn1Pn的面积为故答案为:14、【解析】M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度再利用ADN=DNC即可求得tanADN【详解】解:在正方形ABCD中,BC=CD=1DM=1,CM=2,M、N两点关于对角线AC对称,CN=CM=2ADBC,ADN=DNC,故答案为【点睛】本题综合考查了正方形的性质
19、,轴对称的性质以及锐角三角函数的定义15、1:2【解析】ABC与DEF是位似三角形,则DFAC,EFBC,先证明OACODF,利用相似比求得AC3DF,所以可求OE:OBDF:AC1:3,据此可得答案【详解】解:ABC与DEF是位似三角形,DFAC,EFBCOACODF,OE:OBOF:OCOF:OCDF:ACAC3DFOE:OBDF:AC1:3,则OE:EB1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线16、1【解析】解:原式=12+1=1故答案为117、10【解析】根据翻折的特点得到,.设,则.在中,即,解
20、出x,再根据三角形的面积进行求解.【详解】翻折,又,.设,则.在中,即,解得,.【点睛】此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.18、1【解析】分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果详解:原式 故答案为:1. 点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、33层【解析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD和CE的长,二者的和乘以100后除以20即可确定台阶的数【详解】解:在RtABD中,
21、BD=ABsin45=3m,在RtBEC中,EC=BC=3m,BD+CE=3+3,改造后每层台阶的高为22cm,改造后的台阶有(3+3)1002233(个)答:改造后的台阶有33个【点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质20、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2
22、)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB的高度为6.4米。21、(1)见解析;(2)tanDBC【解析】(1)先利用圆周角定理得到ACB90,再利用平行线的性质得AEO90,则根据垂径定理得到,从而有ADCD;(2)先在RtOAE中利用勾股定理计算出AE,则根据正切的定义得到tanDAE的值,然后根据圆周角定理得到DACDBC,从而可确定tanDB
23、C的值【详解】(1)证明:AB为直径,ACB90,ODBC,AEOACB90,OEAC,ADCD;(2)解:AB10,OAOD5,DEODOE532,在RtOAE中,AE4,tanDAE,DACDBC,tanDBC【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.22、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8
24、=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大23、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用工作时间+乙队每天所需
25、费用工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数
26、量间的关系,正确列出一元一次不等式24、(1)见详解;(2)4或4.【解析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是
27、1,121(m2)(2m1)=0,解得,m=2,则方程的另一根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.25、(1)11;(2)y3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右【解析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11
28、岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式图象经过点则,解得即直线AB所对应的函数表达式:(3)设直线CD所对应的函数表达式为:,得,即直线CD所对应的函数表达式为:把代入得即该市18岁男生年龄组的平均身高大约是174cm左右【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.26、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:购买篮球8个,排球12个;购买篮球9,排球11个;购买篮球2个,排球2个;方案最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个
29、排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得答:篮球每个50元,排球每个30元(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)1解得:m2又m8,8m2篮球的个数必须为整数,只能取8、9、2满足题意的方案有三种:购买篮球8个,排球12个,费用为760元;购买篮球9,排球11个,费用为780元;购买篮球2个,排球2个,费用为1元以上三个方案中,方案最省钱点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键27、(1)见解析;(2)2+1【解析】分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15,CD=BC=1,又EF垂直平分CD,DEF=90,EDF=EFD=15, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键
限制150内