《2023届四川省仁寿县重点中学中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届四川省仁寿县重点中学中考一模数学试题含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1在RtABC中C90,A、B、C的对边分别为a、b、c
2、,c3a,tanA的值为()ABCD32下列图形中,可以看作中心对称图形的是( )ABCD3我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量把130000000kg用科学记数法可表示为( )A13kgB0.13kgC1.3kgD1.3kg4某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.85如图所示,在ABC中,C=90,AC=4,BC=3,将AB
3、C绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD6如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为()A8B8C4D67已知,且,则的值为( )A2或12B2或C或12D或8一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的
4、距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确9在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A千里江山图B京津冀协同发展C内蒙古自治区成立七十周年D河北雄安新区建立纪念10x=1是关于x的方程2xa=0的解,则a的值是()A2B2C1D1二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DFAE,垂足为F,则tanFDC=_12如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,AEQ沿EQ翻折形成FEQ
5、,连接PF,PD,则PF+PD的最小值是_13一个凸边形的内角和为720,则这个多边形的边数是_14在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_15如图,AB是O的直径,CD是O的弦,BAD60,则ACD_16的相反数是_三、解答题(共8题,共72分)17(8分)解方程:18(8分)先化简,再求值:,其中19(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx
6、+b经过一、二、三象限的概率.20(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是 ;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数21(8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地
7、面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上)求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数)22(10分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1x1|1+|y1y1|1,所以A,B两点间的距离为AB=我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x0|1+|y0|1,当O的半径为r时,O的方程可写为:x1+y
8、1=r1问题拓展:如果圆心坐标为P(a,b),半径为r,那么P的方程可以写为 综合应用:如图3,P与x轴相切于原点O,P点坐标为(0,6),A是P上一点,连接OA,使tanPOA=,作PDOA,垂足为D,延长PD交x轴于点B,连接AB证明AB是P的切点;是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的O的方程;若不存在,说明理由23(12分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线24如图,点A、B、C、D在同一条直线
9、上,CEDF,EC=BD,AC=FD,求证:AE=FB参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在RtABC中C=90,A、B、C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=2x.即tanA=.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.2、B【解析】根据中心对称图形的概念求解【详解】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误故选:B【点睛】此题主要考查了中心对称图形的概念,中心对称图
10、形是要寻找对称中心,旋转180度后两部分重合3、D【解析】试题分析:科学计数法是指:a,且,n为原数的整数位数减一.4、C【解析】试题解析:这组数据中4出现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C5、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练6、D
11、【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BOEF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得BAC=ABO,再根据三角形的内角和定理列式求出ABO=30,即BAC=30,根据直角三角形30角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,BE=BF,OE=OF,BOEF,在RtBEO中,BEF+ABO=90,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,BAC=ABO,又BEF=2BAC,即2BAC+BAC=90,解得BAC=30,FCA=30,FBC=30,FC=2,BC=2,AC=2BC=4,
12、AB=6,故选D点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出BAC=30是解题的关键.7、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.8、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图
13、象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题
14、,需要数形结合,结合一次函数的性质逐条分析解答,难度较大9、C【解析】根据中心对称图形的概念求解【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误故选C【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合10、B【解析】试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1故选B.考点:一元一次方程的解.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】首先根据矩形的性质以及垂线的性质得到FDCABE,进
15、而得出tanFDCtanAEB,即可得出答案.【详解】DFAE,垂足为F,AFD90,ADFDAF90,ADFCDF90,DAFCDF,DAFAEB,FDCABE,tanFDCtanAEB,在矩形ABCD中,AB4,E是BC上的一点,BE3,tanFDC.故答案为.【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tanFDCtanAEB是解题关键.12、1【解析】如图作点D关于BC的对称点D,连接PD,ED,由DP=PD,推出PD+PF=PD+PF,又EF=EA=2是定值,即可推出当E、F、P、D共线时,PF+PD定值最小,最小值=EDEF【详解】如图作点D关于BC的对称点
16、D,连接PD,ED,在RtEDD中,DE=6,DD=1,ED=10,DP=PD,PD+PF=PD+PF,EF=EA=2是定值,当E、F、P、D共线时,PF+PD定值最小,最小值=102=1,PF+PD的最小值为1,故答案为1【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.13、1【解析】设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可【详解】解:设这个多边形的边数是n根据多边形内角和公式可得解得故答案为:1【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键14、3.05105【
17、解析】科学记数法的表示形式为a10n的形式,其中1|a|10时,n是正数;当原数的绝对值0,b0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k0,b0,又因为取情况:k b1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .20、(1)100;(2)作图见解析;(
18、3)1【解析】试题分析:(1)根据百分比= 计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=3030%=100,故答案为100;(2)其他有10010%=10人,打球有100302010=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为200040%=1人21、(1)2m(2)27m【解析】(1)首先构造直角三角形AEM,利用,求出即可(2)利用RtAME中,求出AE即可【详解】解:(1)过点E作EMAB,垂足为M设AB为x在RtABF中,AFB=45,BF=AB=x,BC=
19、BFFC=x1在RtAEM中,AEM=22,AM=ABBM=ABCE=x2,又,解得:x2教学楼的高2m(2)由(1)可得ME=BC=x+12+1=3在RtAME中,AE=MEcos22A、E之间的距离约为27m22、问题拓展:(xa)1+(yb)1=r1综合应用:见解析点Q的坐标为(4,3),方程为(x4)1+(y3)1=15【解析】试题分析:问题拓展:设A(x,y)为P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出P的方程;综合应用:由PO=PA,PDOA可得OPD=APD,从而可证到POBPAB,则有POB=PAB由P与x轴相切于原点O可得POB=90,即可得到PAB
20、=90,由此可得AB是P的切线;当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ易证OBP=POA,则有tanOBP=由P点坐标可求出OP、OB过点Q作QHOB于H,易证BHQBOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题试题解析:解:问题拓展:设A(x,y)为P上任意一点,P(a,b),半径为r,AP1=(xa)1+(yb)1=r1故答案为(xa)1+(yb)1=r1;综合应用:PO=PA,PDOA,OPD=APD在POB和PAB中,POBPAB,POB=PABP与x轴相切于原点O
21、,POB=90,PAB=90,AB是P的切线;存在到四点O,P,A,B距离都相等的点Q当点Q在线段BP中点时,POB=PAB=90,QO=QP=BQ=AQ此时点Q到四点O,P,A,B距离都相等POB=90,OAPB,OBP=90DOB=POA,tanOBP=tanPOA=P点坐标为(0,6),OP=6,OB=OP=3过点Q作QHOB于H,如图3,则有QHB=POB=90,QHPO,BHQBOP,=,QH=OP=3,BH=OB=4,OH=34=4,点Q的坐标为(4,3),OQ=5,以Q为圆心,以OQ为半径的O的方程为(x4)1+(y3)1=15考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义23、(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):24、见解析【解析】根据CEDF,可得ECA=FDB,再利用SAS证明ACEFDB,得出对应边相等即可【详解】解:CEDFECA=FDB,在ECA和FDB中 ECAFDB,AE=FB【点睛】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键
限制150内