2023届山东省泰安市名校中考数学对点突破模拟试卷含解析.doc
《2023届山东省泰安市名校中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省泰安市名校中考数学对点突破模拟试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )ABCD2图中三视图对应的正三棱柱是()ABCD3如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD路径匀速运动到点D,设PAD的面积为y,P点
2、的运动时间为x,则y关于x的函数图象大致为()A B C D4已知x2-2x-3=0,则2x2-4x的值为( )A-6B6C-2或6D-2或305将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()ABCD6如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A(3,2)B(3,1)C(2,2)D(4,2)7 “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A567103 B56.71
3、04 C5.67105 D0.5671068某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )A144(1x)2=100B100(1x)2=144C144(1+x)2=100D100(1+x)2=1449在解方程1时,两边同时乘6,去分母后,正确的是()A3x162(3x1)B(x1)12(x1)C3(x1)12(3x1)D3(x1)62(3x1)10如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A2cmB4cmC6cm
4、D8cm二、填空题(本大题共6个小题,每小题3分,共18分)11中,高,则的周长为_。12某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63,则筒仓CD的高约为_m(精确到0.1m,sin630.89,cos630.45,tan631.96)13如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置若,则等于_14分解因式:2x28xy+8y2= 15下列对于随机事件的概率的描述:抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝
5、上”;一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别从中随机摸出一个球,恰好是白球的概率是0.2;测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85其中合理的有_(只填写序号)16如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_三、解答题(共8题,共72分)17(8分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.18(8分)计算:
6、|2|+(2017)04cos4519(8分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围20(8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,BFC=BAD=2DFC求证:(1)CDDF;(2)BC=2CD21(8分)如图,将等边ABC绕点C顺时针旋转90得到EFC,ACE的平分线CD交EF于点D,连接AD、AF求CFA度
7、数;求证:ADBC22(10分)科技改变世界2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹没电的时候还会自己找充电桩充电某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少
8、于7000件,求最多应购进A种机器人多少台?23(12分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0xc时,y0,试比较ac与l的大小,并说明理由24如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,求四边形AECF的面积参考答案一、选择题(共10小题,每小题3分,共
9、30分)1、B【解析】连接BD,利用直径得出ABD=65,进而利用圆周角定理解答即可【详解】连接BD,AB是直径,BAD=25,ABD=90-25=65,AGD=ABD=65,故选B【点睛】此题考查圆周角定理,关键是利用直径得出ABD=652、A【解析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确故选A【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键3、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD
10、上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可【详解】分三种情况:当P在AB边上时,如图1,设菱形的高为h,y=APh,AP随x的增大而增大,h不变,y随x的增大而增大,故选项C不正确;当P在边BC上时,如图2,y=ADh,AD和h都不变,在这个过程中,y不变,故选项A不正确;当P在边CD上时,如图3,y=PDh,PD随x的增大而减小,h不变,y随x的增大而减小,P点从点A出发沿ABCD路径匀速运动到点D,P在三条线段上运动的时间相同,故选项D不正确,故选B【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出PAD的面
11、积的表达式是解题的关键4、B【解析】方程两边同时乘以2,再化出2x2-4x求值解:x2-2x-3=02(x2-2x-3)=02(x2-2x)-6=02x2-4x=6故选B5、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相
12、同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.6、A【解析】正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,=,BG=6,AD=BC=2,ADBG,OADOBG,=,=,解得:OA=1,OB=3,C点坐标为:(3,2),故选A7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】567000=5.67105,【点睛】此题考查科学记数法的表示方法科
13、学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、D【解析】试题分析:2013年的产量=2011年的产量(1+年平均增长率)2,把相关数值代入即可解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键9、D【解析】解: ,3(x1)6=2(3x+1),故选D点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型10、B【解析】首先连接OC,AO,由切线
14、的性质,可得OCAB,根据已知条件可得:OA=2OC,进而求出AOC的度数,则圆心角AOB可求,根据弧长公式即可求出劣弧AB的长【详解】解:如图,连接OC,AO,大圆的一条弦AB与小圆相切,OCAB,OA=6,OC=3,OA=2OC,A=30,AOC=60,AOB=120,劣弧AB的长= =4,故选B【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、32或42【解析】根据题意,分两种情况讨论:若ACB是锐角,若ACB是钝角,分别画出图形,利用勾股定理,即可求解.【详解】分两种情况讨论:若ACB是锐角,如图1,高, 在Rt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 山东省 泰安市 名校 中考 数学 突破 模拟 试卷 解析
限制150内