《2023届吉林省白山市长白县中考数学猜题卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省白山市长白县中考数学猜题卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()AacbcB|ab|abCacbcDbc2如图,ABC绕点A顺时针旋转45得到ABC,若BAC90,ABAC,则图中阴影部分的面积等于( )A2B1CDl3小明和小亮
2、按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A小明不是胜就是输,所以小明胜的概率为B小明胜的概率是,所以输的概率是C两人出相同手势的概率为D小明胜的概率和小亮胜的概率一样4正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180后,C点的坐标是( )A(2,0)B(3,0)C(2,1)D(2,1)5如图,某计算机中有、三个按键,以下是这三个按键的功能(1):将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1(2):将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2(3):将荧幕显示的数变成它
3、的平方,例如:荧幕显示的数为6时,按下后会变成3若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A0.01B0.1C10D1006计算8+3的结果是()A11B5C5D117若矩形的长和宽是方程x27x+12=0的两根,则矩形的对角线长度为( )A5B7C8D108如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:19一元二次方程3x2-6x+4=0根的情况是A有两个不相等的实数根B有两个相等的实数根C有两个
4、实数根D没有实数根10下列计算正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11计算:=_12方程的解为_.13如图,已知,点为边中点,点在线段上运动,点在线段上运动,连接,则周长的最小值为_14的相反数是_15如图,AOB是直角三角形,AOB90,OB2OA,点A在反比例函数y的图象上若点B在反比例函数y的图象上,则k的值为_16一元二次方程x24=0的解是_三、解答题(共8题,共72分)17(8分)解分式方程: -1=18(8分)2019年8月山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态太职学院足球场作为一个重要比赛场馆占地面积
5、约24300平方米总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了结来比原计划提前4天完成安装任务求原计划每天安装多少个座位19(8分)如图,AB为O的直径,点C,D在O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E(1)求证:EF是O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长20(8分)计算: + 2018021(8分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG
6、CG22(10分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?23(12分)如图,已知ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,EAB=DAC=90,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:BDA=ECA(2)若m=,n=3,ABC=75,求BD的长.(3)当ABC=_
7、时,BD最大,最大值为_(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。24如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标参考答案一、选择题(共10
8、小题,每小题3分,共30分)1、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可【详解】由数轴上点的位置得:ab0c,acbc,|ab|ba,bc,acbc.故选A【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键2、D【解析】ABC绕点A顺时针旋转45得到ABC,BAC=90,AB=AC=,BC=2,C=B=CAC=C=45,AC=AC=,ADBC,BCAB,AD=BC=1,AF=FC=AC=1,DC=AC-AD=-1,图中阴影部分的面积等于:SAFC-SDEC=11-( -1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,
9、AF,DC的长是解题关键3、D【解析】利用概率公式,一一判断即可解决问题.【详解】A、错误小明还有可能是平;B、错误、小明胜的概率是,所以输的概率是也是;C、错误两人出相同手势的概率为;D、正确小明胜的概率和小亮胜的概率一样,概率都是;故选D【点睛】本题考查列表法、树状图等知识用到的知识点为:概率=所求情况数与总情况数之比4、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180后C的对应点设是C,则AC=AC=2,则OC=3,故C的坐标是(3,0)故选B考
10、点:坐标与图形变化-旋转5、B【解析】根据题中的按键顺序确定出显示的数即可【详解】解:根据题意得: =40,=0.4,0.42=0.04,=0.4,=40,402=400,4006=464,则第400次为0.4故选B【点睛】此题考查了计算器数的平方,弄清按键顺序是解本题的关键6、B【解析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1依此即可求解【详解】解:832故选B【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”7、A【解
11、析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长=1故选A8、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B9、D【解析】根据=b2-4ac,求出的值,然后根据的值与一元二次方程根的关系判断即可.【详解】a=3,b=-6,c=4,=b2-4ac=(-6)2-434=-120时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实
12、数根.10、A【解析】原式各项计算得到结果,即可做出判断【详解】A、原式=,正确;B、原式不能合并,错误;C、原式=,错误;D、原式=2,错误故选A【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、-【解析】根据二次根式的运算法则即可求出答案【详解】原式=2.故答案为-.【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型12、【解析】两边同时乘,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘,得,解得,检验:当时,0,所以x=1是原分式方程的根,故答案为:x=1.【点睛
13、】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.13、【解析】作梯形ABCD关于AB的轴对称图形,将BC绕点C逆时针旋转120,则有GE=FE,P与Q是关于AB的对称点,当点F、G、P三点在一条直线上时,FEP的周长最小即为FG+GE+EP,此时点P与点M重合,FM为所求长度;过点F作FHBC,M是BC中点,则Q是BC中点,由已知条件B=90,C=60,BC=2AD=4,可得CQ=FC=2,FCH=60,所以FH=,HC=1,在RtMFH中,即可求得FM【详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,PF=GQ,将BC绕点
14、C逆时针旋转120,Q点关于CG的对应点为F, GF=GQ,设FM交AB于点E,F关于AB的对称点为G, GE=FE,当点F、G、P三点在一条直线上时,FEP的周长最小即为FG+GE+EP,此时点P与点M重合,FM为所求长度;过点F作FHBC,M是BC中点,Q是BC中点,B=90,C=60,BC=2AD=4,CQ=FC=2,FCH=60,FH=,HC=1,MH=7,在RtMFH中,FM;FEP的周长最小值为故答案为:【点睛】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键14、【解析】根据只有符
15、号不同的两个数互为相反数,可得答案【详解】的相反数是.故答案为.【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.15、2【解析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作ACx轴,BDx轴,分别于C,D根据条件得到ACOODB,得到:=1,然后用待定系数法即可【详解】过点A,B作ACx轴,BDx轴,分别于C,D设点A的坐标是(m,n),则AC=n,OC=mAOB=90,AOC+BOD=90DBO+BOD=90,DBO=AOCBDO=ACO=90,BDOOCA,OB=1OA,BD=1m,OD=1n因为点A在反比例函数y=的图象上,mn=1点B在反比例函数y=的图象上,
16、B点的坐标是(-1n,1m)k=-1n1m=-4mn=-2故答案为-2【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键16、x=1【解析】移项得x1=4,x=1故答案是:x=1三、解答题(共8题,共72分)17、7【解析】根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【详解】 -1=3-(x-3)=-13-x+3=-1x=7【点睛】此题主要考查分式方程的求解,解题的关键是正确去掉分母.18、原计划每天安装100个座位【解析】根据题意先设原计划每天安装x个座位,列出方
17、程再求解.【详解】解:设原计划每天安装个座位,采用新技术后每天安装个座位, 由题意得: 解得: 经检验:是原方程的解 答:原计划每天安装100个座位【点睛】此题重点考查学生对分式方程的实际应用,掌握分式方程的解法是解题的关键.19、(1)证明见解析(2)【解析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OCAE,得到OCEF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明AECACB,根据相似三角形的性质列出比例式,计算即可【详解】(1)证明:连接OC,OA=OC,OCA=BAC,点C是的中点,EAC=BAC,EAC=OCA,OCAE,AEEF,OCEF,即EF是O的切线
18、;(2)解:AB为O的直径,BCA=90,AC=4,EAC=BAC,AEC=ACB=90,AECACB,AE=【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键20、2【解析】根据实数的混合运算法则进行计算.【详解】解:原式= -( -1)+1=- +1+1=2【点睛】此题重点考察学生对实数的混合运算的应用,熟练掌握计算方法是解题的关键.21、详见解析【解析】先证明ADFCDE,由此可得DAFDCE,AFDCED,再根据EAGFCG,AECF,AEGCFG可得AEGCFG,所以AGCG【详解】证明:四边形ABCD是正方形
19、,ADDC,E、F分别是AB、BC边的中点,AEEDCFDF又DD,ADFCDE(SAS)DAFDCE,AFDCEDAEGCFG在AEG和CFG中,AEGCFG(ASA)AGCG【点睛】本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法22、(1)30;(2)海监船继续向正东方向航行是安全的【解析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30,ABP=120APB=180-30-120=30(2)过点P作PHAB于点H 在RtAPH中,
20、PAH=30,AH=PH在RtBPH中,PBH=30,BH=PHAB=AH-BH=PH=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形23、135 m+n 【解析】试题分析:(1)由已知条件证ABDAEC,即可得到BDA=CEA;(2)过点E作EGCB交CB的延长线于点G,由已知条件易得EBG=60,BE=2,这样在RtBEG中可得EG=,BG=1,结合BC=n=3,可得GC=4,由长可得EC=,结合ABDAEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,此时BD最大=EC最大=;(4)由ABDA
21、EC可得AEC=ABD,结合ABE是等腰直角三角形可得EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.试题解析:(1)ABE和ACD都是等腰直角三角形,且EAB=DAC=90,AE=AB,AC=AD,EAB+BAC=BAC+DAC,即EAC=BAD,EACBAD,BDA=ECA;(2)如下图,过点E作EGCB交CB的延长线于点G,EGB=90,在等腰直角ABE,BAE=90,AB=m= ,ABE=45,BE=2,ABC=75,EBG=180-75-45=60,BG=1,EG=,GC=BG+BC=4,CE=,EACBAD,BD=EC=;(3)由(2)可知,
22、BE=,BC=n,因此当E、B、C三点共线时,EC最大=BE+BC=,BD=EC,BD最大=EC最大=,此时ABC=180-ABE=180-45=135,即当ABC=135时,BD最大=;(4)ABDAEC,AEC=ABD,在等腰直角ABE中,AEC+CEB+ABE=90,ABD+ABE+CEB=90,BFE=180-90=90,EF2+BF2=BE2,又在等腰RtABE中,BE2=2AE2,2AE2=EF2+BF2.点睛:(1)解本题第2小题的关键是过点E作EGCB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在RtEGC中求得EC的长了,结合(1)中所证的全等三角
23、形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,EC=EB+BC=是EC的最大值了.24、 (1)、y=+x+4;(2)、不存在,理由见解析.【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、抛物线y=a+bx+c(a0)过点C(0,4) C=4=1 b=2a 抛物线过点A(2,0) 4a2b+c=0 由解得:a=,b=1,c=4 抛物线的解析式为:y=+x+4(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FHx轴于点H,FGy轴于点G. 设点F的坐标为(t,+t+4),其中0t4 则FH=+t+4 FG=tOBF的面积=OBFH=4(+t+4)=+2t+8 OFC的面积=OCFG=2t四边形ABFC的面积=AOC的面积+OBF的面积+OFC的面积=+4t+12令+4t+12=17 即+4t5=0 =1620=40 方程无解不存在满足条件的点F考点:二次函数的应用
限制150内