2023届山东省部分县中考数学考前最后一卷含解析.doc
《2023届山东省部分县中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省部分县中考数学考前最后一卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1若直线y=kx+b图象如图所示,则直线y=bx+k的图象大致是( )ABCD22018的绝对值是( )A2018B2018CD20183如图,在等腰直角三角形ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕
2、,则sinBED的值是( )ABCD4利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD5如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )ABCD6已知O的半径为5,若OP=6,则点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法判断7关于x的不等式组无解,那么m的取值范围为( )Am1Bm1C1m0D1m08下列二次根式中,为最简二次根式的是()ABCD9估计的值在()A4和5之间B5和6之间C6和7之间D7和8之间10如图,已知ABCD,DEAF,垂足为E,若CAB=50,则D的度数为
3、()A30B40C50D60二、填空题(本大题共6个小题,每小题3分,共18分)11七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是 cm(结果保留根号)12如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是cm,那么围成的圆锥的高度是 cm13抛物线y=x2+2x+m1与x轴有交点,则m的取值范围是_14已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则
4、该实数根是_15因式分解:a2b2abb 16如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)三、解答题(共8题,共72分)17(8分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?18(8分)计算:(-)-2 2()+ 19(8分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交
5、抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由20(8分)已知关于x的方程.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.21(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上
6、的旁切圆如图所示,已知:I是ABC的BC边上的旁切圆,E、F分别是切点,ADIC于点D(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论(2)设AB=AC=5,BC=6,如果DIE和AEF的面积之比等于m,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程22(10分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为求 x 和 y 的值23(12分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1(1)小明转动转盘一次,
7、当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)24如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,)(1)求m、n的值和反比例函数的表达式(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长参考答案一、选择题(共10小题,每小
8、题3分,共30分)1、A【解析】根据一次函数y=kx+b的图象可知k1,b1,再根据k,b的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,即可判断【详解】解:一次函数y=kx+b的图象可知k1,b1,-b1,一次函数y=bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A【点睛】本题考查了一次函数的图象与系数的关系函数值y随x的增大而减小k1;函数值y随x的增大而增大k1;一次函数y=kx+b图象与y轴的正半轴相交b1,一次函数y=kx+b图象与y轴的负半轴相交b1,一次函数y=kx+b图象过原点b=12、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点
9、到原点的距离叫做这个数的绝对值.详解:2018的绝对值是2018,即故选D点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.3、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A4、A【解析】根据:如果一个图形沿着一条直线
10、对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.5、A【解析】对一个物体,在正面进行
11、正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.6、B【解析】比较OP与半径的大小即可判断.【详解】,点P在外,故选B【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.7、A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.【详解】,解不等式得:x-1,由于原不等式组无解,所以m-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元
12、一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.8、B【解析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).【详解】A. =3, 不是最简二次根式; B. ,最简二次根式; C. =,不是最简二次根式; D. =,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.9、C【解析】 ,.即的值在6和7之间.故选C.10、B【解析】试题解析:ABCD,且 在中, 故选B二、填空题(本大题共6个小题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 山东省 部分 中考 数学 考前 最后 一卷 解析
限制150内