2022-2023学年云南省勐腊县第一中学高三最后一卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年云南省勐腊县第一中学高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省勐腊县第一中学高三最后一卷数学试卷含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2CD2我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中
2、通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( )A400米B480米C520米D600米3有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为cm,高度为cm,现往里面装直径为cm的球,在能盖住盖子的情况下,最多能装( )(附:)A个B个C个D个4在中,若,则实数( )ABCD5设是等差数列,且公差不为零,其前项和为则“,”是“为递增数
3、列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( )ABCD7设等差数列的前项和为,若,则( )A21B22C11D128过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为( )A BCD9设全集,集合,则( )ABCD10设,则ABCD11九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,
4、池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD12已知某口袋中有3个白球和个黑球(),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是若,则= ( )AB1CD2二、填空题:本题共4小题,每小题5分,共20分。13将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.14
5、各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_.15定义在R上的函数满足:对任意的,都有;当时,则函数的解析式可以是_.16在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值18(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.19(12分)求下列函数
6、的导数:(1)(2)20(12分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.21(12分)如图:在中,.(1)求角;(2)设为的中点,求中线的长.22(10分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设等比数列的公比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q【详解】由题意,正项等比数
7、列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题2、B【解析】根据题意,画出几何关系,结合各线段比例可先求得第一展望台和第二展望台的距离,进而由比例即可求得该塔的实际高度.【详解】设第一展望台到塔底的高度为米,塔的实际高度为米,几何关系如下图所示:由题意可得,解得;且满足,故解得塔高米,即塔高约为480米.故选:B【点睛】本题考查了对中国文化的理解与简单应用,属于基础题.3、C【解析】计算球心连线
8、形成的正四面体相对棱的距离为cm,得到最上层球面上的点距离桶底最远为cm,得到不等式,计算得到答案.【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切,这样,相邻的四个球的球心连线构成棱长为cm的正面体,易求正四面体相对棱的距离为cm,每装两个球称为“一层”,这样装层球,则最上层球面上的点距离桶底最远为cm,若想要盖上盖子,则需要满足,解得,所以最多可以装层球,即最多可以装个球故选:【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.4、D【解析】将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,所以,.故选:D【点睛】
9、本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.5、A【解析】根据等差数列的前项和公式以及充分条件和必要条件的定义进行判断即可【详解】是等差数列,且公差不为零,其前项和为,充分性:,则对任意的恒成立,则,若,则数列为单调递减数列,则必存在,使得当时,则,不合乎题意;若,由且数列为单调递增数列,则对任意的,合乎题意.所以,“,”“为递增数列”;必要性:设,当时,此时,但数列是递增数列.所以,“,”“为递增数列”.因此,“,”是“为递增数列”的充分而不必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前项和公式是解决本题的关键,属于中等题6、C【解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 云南省 勐腊县 第一 中学 最后 一卷 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内