2022-2023学年四川省南充市高坪区白塔中学高三第二次模拟考试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年四川省南充市高坪区白塔中学高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省南充市高坪区白塔中学高三第二次模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是( )ABCD2已知椭圆内有一条以点为中点的弦,则直线
2、的方程为( )ABCD3函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )ABC2D4已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )ABCD5已知,由程序框图输出的为( )A1B0CD6已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A内切B相交C外切D相离7已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )ABCD8已知函数的部分图象如图所示,则( )ABCD9已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )AB2C4D10已知平面平面,且是正方形,在正
3、方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )AB16CD11函数的图像大致为( )ABCD12集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,点在边上,且,设,则_(用,表示)14已知函数若关于的不等式的解集是,则的值为_15公比为正数的等比数列的前项和为,若,则的值为_16甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列,满足.
4、(1)求数列,的通项公式;(2)分别求数列,的前项和,.18(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.19(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.20(12分)已知首项为2的数列满足.(1)证明:数列是等差数列(2)令,求数列的前项和.21(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将,中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.22(10分)在平面直角坐标系中,直线的参
5、数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题2
6、、C【解析】设,则,相减得到,解得答案.【详解】设,设直线斜率为,则,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.3、C【解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.4、A【解析】由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点
7、重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.5、D【解析】试题分析:,所以,所以由程序框图输出的为.故选D考点:1、程序框图;2、定积分6、B【解析】化简圆到直线的距离 ,又 两圆相交. 选B7、B【解析】根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【详解】函数 则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即 故答案为:B.【点睛】这个题目考查了三角函数的两角和差的正余弦公式的应用,以及三角函数的图
8、像的性质的应用,题目比较综合.8、A【解析】先利用最高点纵坐标求出A,再根据求出周期,再将代入求出的值.最后将代入解析式即可.【详解】由图象可知A1,所以T,.f(x)sin(2x+),将代入得)1,结合0,.sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.9、C【解析】设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 南充市 高坪区 白塔 中学 第二次 模拟考试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内