2022-2023学年吉林长春市宽城区中考三模数学试题含解析.doc
《2022-2023学年吉林长春市宽城区中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林长春市宽城区中考三模数学试题含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若A=60,B=100,BC=4,则扇形BDE的面积为何?()ABCD2如图,将一块含有30角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果1=30,那么2的
2、度数为( )A30B40C50D603若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm14下列计算正确的是ABCD5下列计算,结果等于a4的是()Aa+3a Ba5a C(a2)2 Da8a26在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A众数B平均数C中位数D方差7如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2
3、B2C2D2E2F2的各边相切,按这样的规律进行下去,A11B11C11D11E11F11的边长为()ABCD8如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD9九章算术中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是类似地,图2所示的算筹图我们可以表述为()ABCD10若关于x的不等式组只有5个
4、整数解,则a的取值范围( )ABCD11PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25105B0.25106C2.5105D2.510612三角形的两边长分别为3和6,第三边的长是方程x26x+80的一个根,则这个三角形的周长是()A9B11C13D11或13二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在ABC中,DM垂直平分AC,交BC于点D,连接AD,若C=28,AB=BD,则B的度数为_度14经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形
5、和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”如图,线段CD是ABC的“和谐分割线”,ACD为等腰三角形,CBD和ABC相似,A46,则ACB的度数为_15反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=_16解不等式组 请结合题意填空,完成本题的解答()解不等式,得 ;()解不等式,得 ;()把不等式和的解集在数轴上表示出来:()原不等式组的解集为 17某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元则A型号的计算器的每只进价为_元18
6、一个多项式与的积为,那么这个多项式为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?20(6分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师
7、生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?21(6分)如图,在ABCD中,BAC=90,对角线AC,BD相交于点P,以AB为直径的O分别交BC,BD于点E,Q,连接EP并延长交AD于点F(1)求证:EF是O的切线;(2)求证:=4BPQP22(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3)求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求ABC的面积23(8分)计算:sin30+(4)0+|24(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与
8、y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标25(10分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足OBCOFC,求证:CF为O的切线;若四边形ACFD是平行四边形,求sinBAD的值
9、26(12分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?27(12分)如图,在菱形ABCD中,对角线AC与B
10、D交于点O过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:A=60,B=100,C=18060100=20,DE=DC,C=DEC=20,BDE=C+DEC=40,S扇形DBE=故选C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=2、D【解析】如图,因为,1=30,1+3=60,所以3=30,因为A
11、DBC,所以3=4,所以4=30,所以2=180-90-30=60,故选D.3、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C4、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键5、C【解析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可【详解
12、】Aa+3a=4a,错误;Ba5和a不是同类项,不能合并,故此选项错误;C(a2)2=a4,正确;Da8a2=a6,错误故选C【点睛】本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则6、D【解析】方差是反映一组数据的波动大小的一个量方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。【详解】由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差故选D7、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得E1OD1=60,则E1OD1为等边三角形,再根据切线的性质得OD2E1D1,于是可得
13、OD2=E1D1=2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,依此规律可得正六边形A11B11C11D11E11F11的边长=()102,然后化简即可详解:连接OE1,OD1,OD2,如图,六边形A1B1C1D1E1F1为正六边形,E1OD1=60,E1OD1为等边三角形,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,OD2E1D1,OD2=E1D1=2,正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,则正
14、六边形A11B11C11D11E11F11的边长=()102=故选A点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆记住正六边形的边长等于它的半径8、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出B
15、AFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=
16、BAD=90,E、F分别为边AB,BC的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=A
17、F-AM=,AM=MF,故正确;如图,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键9、A【解析】根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 吉林 长春市 城区 中考 数学试题 解析
限制150内