2022-2023学年安徽省皖南地区高三下学期联合考试数学试题含解析.doc
《2022-2023学年安徽省皖南地区高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年安徽省皖南地区高三下学期联合考试数学试题含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知直线和平面,若,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D不充分不必要2历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似
3、值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是ABCD3M、N是曲线y=sinx与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD24若的展开式中含有常数项,且的最小值为,则( )ABCD5已知,是两条不重合的直线,是两个不重合的平面,则下列命题中错误的是( )A若,则或B若,则C若,则D若,则6函数的定义域为( )A或B或CD7设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,则B若,,则C若,则D若,则8已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为( )ABC3D49设等差数列的前项和为,若,
4、则( )A23B25C28D2910已知函数,若,使得,则实数的取值范围是( )ABCD11如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为( )A12BCD12已知集合,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,则_.14已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为 15若,i为虚数单位,则正实数的值为_.16已知,且,则最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线C:x2=4py(p为大于2的质数)的焦点为F,过点F且斜率为k(k0)的直线交C于
5、A,B两点,线段AB的垂直平分线交y轴于点E,抛物线C在点A,B处的切线相交于点G.记四边形AEBG的面积为S.(1)求点G的轨迹方程;(2)当点G的横坐标为整数时,S是否为整数?若是,请求出所有满足条件的S的值;若不是,请说明理由.18(12分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.19(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.20(12分)已知椭圆的离心率为,且过点()求椭圆的方程;()设是椭圆上且不在轴
6、上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值21(12分)如图,四边形中,沿对角线将翻折成,使得. (1)证明:;(2)求直线与平面所成角的正弦值.22(10分)如图,在四面体中,.(1)求证:平面平面;(2)若,二面角为,求异面直线与所成角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【详解】,不能确定还是,当时,存在,由又可得,所以“”是“”的必要不充分条件,故选:B【点睛】本题主要考查了必要不充分条件,线面垂
7、直,线线垂直的判定,属于中档题.2、B【解析】初始:,第一次循环:,继续循环;第二次循环:,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B3、C【解析】两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=,|x1-x2|=,|y1-y2|=|sinx1-cosx2|=+=,|MN|=.故选C.4、C【解析】展开式的通项为,因为展开式中含有常数项,所以,即为整数,故n的最小值为1所以.故选C点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2
8、)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.5、D【解析】根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,由线面平行的判定定理,有,故B正确;选项C:若,故,所成的二面角为,则,故C正确;选项D,若,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.6、A【解析】根据偶次根式被开方数非负可得出关于的不等式,即可解得函数
9、的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题.7、C【解析】在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,则与相交或平行,故A错误;在B中,若,则或,故B错误;在C中,若,则由线面垂直的判定定理得,故C正确;在D中,若,则与平行或,故D错误故选C【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题8、A【解析】根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐
10、标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平9、D【解析】由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.10、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 安徽省 皖南 地区 下学 联合 考试 数学试题 解析
限制150内