2022-2023学年北京市第一五九中学高三第六次模拟考试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年北京市第一五九中学高三第六次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京市第一五九中学高三第六次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是虚数单位,则( )ABCD2已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )ABCD3已知集合Myy,x0,Nxylg(2x),则MN为( )A(1,)B(1,2)C2
2、,)D1,)4方程在区间内的所有解之和等于( )A4B6C8D105一个几何体的三视图如图所示,则该几何体的体积为( )ABCD6若单位向量,夹角为,且,则实数( )A1B2C0或1D2或17已知点,点在曲线上运动,点为抛物线的焦点,则的最小值为( )ABCD48双曲线的渐近线方程是( )ABCD9已知椭圆:的左、右焦点分别为,点,在椭圆上,其中,若,则椭圆的离心率的取值范围为( )ABCD10已知是等差数列的前项和,若,则( )A5B10C15D2011已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD12定义在上的奇函数满足,若,则( )AB0C1D2二、填空题:本题共4
3、小题,每小题5分,共20分。13已知函数,则曲线在点处的切线方程为_.14设为定义在上的偶函数,当时,(为常数),若,则实数的值为_.15已知等比数列的前项和为,若,则的值是 16已知双曲线C:()的左、右焦点为,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中,(1)当时,求的值;(2)当的最小正周期为时,求在上的值域18(12分)在ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b7,D是BC边上的点,且ACD的面积为,求sinADB.19(12分)11月,
4、2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.求;规定,经过计算机计算可估计得,请根据中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.20(12分)已知为椭圆的左、
5、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.21(12分)设函数 .(I)求的最小正周期;(II)若且,求的值.22(10分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.2、A【解析】由已知可得,根据二倍角公式即可求解.
6、【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.3、B【解析】,故选4、C【解析】画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.5、A【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三
7、视图和体积计算,属于基础题6、D【解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,即,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.7、D【解析】如图所示:过点作垂直准线于,交轴于,则,设,则,利用均值不等式得到答案.【详解】如图所示:过点作垂直准线于,交轴于,则,设,则,当,即时等号成立.故选:.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.8、C【解析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北京市 第一 中学 第六 模拟考试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内