2022-2023学年云南省凤庆县第一中学高考仿真卷数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年云南省凤庆县第一中学高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省凤庆县第一中学高考仿真卷数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1在等差数列中,若为前项和,则的值是( )A156B124C136D1802已知(),i为虚数单位,则( )AB3C1D53在中,内角的平分线交边于点,则的面积是( )ABCD4在中,角所对的边分别为,已知,则( )A或BCD或5i是虚数单位,若,则乘积的值是( )A15B3C3D156已知实数,满足,则的最大值等于( )A2BC4D87椭圆的焦点为,点在椭圆上,若,则的大小为( )ABCD8如图,在棱长为4的正方体中,E,F,G分别为棱 AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,则的最小值为( )ABCD9函数(其中,)的图象如图,则此函数表达
3、式为( )ABCD10如图,矩形ABCD中,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:对满足题意的任意的的位置,;对满足题意的任意的的位置,则( ) A命题和命题都成立B命题和命题都不成立C命题成立,命题不成立D命题不成立,命题成立11若向量,则( )A30B31C32D3312某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )A36种B44种C48种D54种二、填空题:本题共4小题,每小题5分,共20分。13
4、一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是_14请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:_15已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为_.16已知为等差数列,为其前n项和,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.18(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABA
5、EED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.19(12分)已知函数.(1)讨论的单调性;(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.20(12分)设椭圆:的右焦点为,右顶点为,已知椭圆离心率为,过点且与轴垂直的直线被椭圆截得的线段长为3.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线斜率的取值范围.21(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.22(10分)某工厂生产某种电子产品,每件产品
6、不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每 件产品检验合格与否相互独立若每件产品均检验一次,所需检验费用较多,该工厂提出以下检 验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次设该工厂生产件该产品,记每件产品的平均检验次 数为 (1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均
7、检验次数参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为,可得,根据等差数列前项和,即可求得答案.【详解】,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.2、C【解析】利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.3、B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,
8、则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.4、D【解析】根据正弦定理得到,化简得到答案.【详解】由,得,或,或故选:【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.5、B【解析】,选B6、D【解析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函
9、数的最值,考查数形结合的数学思想方法,属于基础题.7、C【解析】根据椭圆的定义可得,再利用余弦定理即可得到结论.【详解】由题意,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.8、C【解析】把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值【详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,正方体中平面,从而有,在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,当且仅当共
10、线时取等号,所求最小值为故选:C【点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值9、B【解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.10、A【解析】作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】如图所示,过作平面,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 云南省 凤庆县 第一 中学 高考 仿真 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内