2022-2023学年四川省南充市南充高级中学高三第三次模拟考试数学试卷含解析.doc
《2022-2023学年四川省南充市南充高级中学高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省南充市南充高级中学高三第三次模拟考试数学试卷含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知,则a,b,c的大小关系为( )ABCD2已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD3已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )ABCD4已知函数,若,则的取值范围是( )ABCD5设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD6集合,则( )ABCD7已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )ABCD8根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()ABCD9设,分别为双曲线
3、(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD10已知函数,则函数的零点所在区间为( )ABCD11已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D412一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数在区间内有且仅有两个零点,则实数的取值范围是_.14如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折
4、,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_15函数f(x)x2xlnx的图象在x1处的切线方程为_.16已知等比数列的各项都是正数,且成等差数列,则=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.18(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.19(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间
5、甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.求;规定,经过计算机计算可估计得,请根据中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.20(12分)已知函数和的图象关于原点对称,且(1)解关于的不等式;(2)如果对,不等式恒成立,求实
6、数的取值范围21(12分)设为实数,已知函数,(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围22(10分)已知三点在抛物线上.()当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;()当,且时,求面积的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】与中间值1比较,可用换底公式化为同底数对数,再比较大小【详解】,又,即,故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数
7、对数比较,若是不同类型的数,可借助中间值如0,1等比较2、A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.3、D【解析】讨论,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,故,函数在上单调递增,在上单调递减,且;当时,;当时,函数单调递减;如图所示画出函数图像,则,故.故选:.
8、【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.4、B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.5、C【解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【点睛】本题考查导数的应用,考查用导数求最值解题时对和的关系的处理是解题关键6、A【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,属于简单题.7、B【解析】由题意可得,
9、且,故有,再根据,求得,由可得的最大值,检验的这个值满足条件【详解】解:函数,为的零点,为图象的对称轴,且,、,即为奇数在,单调,由可得的最大值为1当时,由为图象的对称轴,可得,故有,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题8、A【解析】每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数
10、:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.9、C【解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.10、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 四川省 南充市 南充 高级中学 第三次 模拟考试 数学试卷 解析
限制150内