2022-2023学年吉林省通化市梅河口市博文学校高三第二次联考数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年吉林省通化市梅河口市博文学校高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省通化市梅河口市博文学校高三第二次联考数学试卷含解析.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为( )ABCD2已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为
2、( )A1.5B2.5C3.5D4.53如图所示,网格纸上小正方形的边长为,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为( )ABCD4棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为( )ABCD15已知集合,集合,若,则( )ABCD6已知函数在区间有三个零点,且,若,则的最小正周期为( )ABCD7设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD8一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为( )mA1BCD29若,则下列关
3、系式正确的个数是( ) A1B2C3D410函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 11已知抛物线经过点,焦点为,则直线的斜率为( )ABCD12已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )ABCD2二、填空题:本题共4小题,每小题5分,共20分。13经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是_14如图,在平面四边形中,则_15已知函数,若在定义域内恒有,则实数的取值范围是_16在中,内角所对的边分别是,若,则_.三、解答题:共70分。解答应写出文字说明、证明
4、过程或演算步骤。17(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.18(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.19(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB
5、,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.20(12分)已知函数(1)若在处取得极值,求的值;(2)求在区间上的最小值;(3)在(1)的条件下,若,求证:当时,恒有成立21(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.22(10分)已知数列为公差为d的等差数列,且,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的
6、前n项和为.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.2、D【解析】利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,
7、考查了学生概念理解,数据处理,数学运算的能力,属于基础题.3、B【解析】根据三视图可以得到原几何体为三棱锥,且是有三条棱互相垂直的三棱锥,根据几何体的各面面积可得最大面的面积【详解】解:分析题意可知,如下图所示,该几何体为一个正方体中的三棱锥,最大面的表面边长为的等边三角形,故其面积为,故选B【点睛】本题考查了几何体的三视图问题,解题的关键是要能由三视图解析出原几何体,从而解决问题4、C【解析】连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,推导出OHRQ,且OHRQ,由此能求出该直线被球面截在球内的线段的长【详解】如图,MN为该直线被球面截在球内的线段连结并
8、延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,OHRQ,且OHRQ,MH,MN故选:C【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题5、A【解析】根据或,验证交集后求得的值.【详解】因为,所以或.当时,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.6、C【解析】根据题意,知当时,由对称轴的性质可知和,即可求出,即可求出的最小正周期.【详解】解:由于在区间有三个零点,当时,由对称轴可知,满足,即.同理,满足,即,所以最小正周期为:.故选:C.
9、【点睛】本题考查正弦型函数的最小正周期,涉及函数的对称性的应用,考查计算能力.7、C【解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.8、C【解析】由图像用分段函数表示,该物体在间的运动路程可用定积分表示,计算即得解【详解】由题中图像可得,由变速直线运动的路程公式,可得所以物体在间的运动路程是故选:C【点睛】本题考查了定积分的实际应用,考查了学生转化划归,数形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 吉林省 通化市 梅河口市 文学 校高三 第二次 联考 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内