2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc
《2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南中央民族大学附属中学高三二诊模拟考试数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则( )ABCD2设函数若关于的方程有四个实数解,其中,则的取值范围是( )ABCD3如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D
2、上述三种情况都有可能4已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD5幻方最早起源于我国,由正整数1,2,3,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D50506已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-27已知集合的所有三个元素的子集记为记为集合中的最大元素,则()ABCD8若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD9抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有( )A1个B2个C0个D无数个
3、10若复数()在复平面内的对应点在直线上,则等于( )ABCD11盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD12函数在上的图象大致为( )A B C D 二、填空题:本题共4小题,每小题5分,共20分。13若展开式中的常数项为240,则实数的值为_.14用数字、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_个.15变量满足约束条件,则目标函数的最大值是_16执行右边的程序框图,输出的的值为 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设椭圆的右焦点为,过
4、的直线与交于两点,点的坐标为(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围18(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且, ,(1)若分别为,的中点,求证:平面;(2)若,与平面所成角的正弦值,求二面角的余弦值19(12分)已知函数.()当时,求函数在上的值域;()若函数在上单调递减,求实数的取值范围.20(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求
5、实数a的取值范围.21(12分)已知,求证:(1);(2).22(10分)已知椭圆C:(ab0)的两个焦点分别为F1(,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(1)求椭圆C的方程;(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1k32k2,试求m,n满足的关系式.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公
6、式得,所以 .故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.2、B【解析】画出函数图像,根据图像知:,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.3、B【解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题4、C【解析】根据
7、题意,由函数的奇偶性可得,又由,结合函数的单调性分析可得答案【详解】根据题意,函数是定义在上的偶函数,则,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题5、C【解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,于是故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.6、D【解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的
8、连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.7、B【解析】分类讨论,分别求出最大元素为3,4,5,6的三个元素子集的个数,即可得解.【详解】集合含有个元素的子集共有,所以在集合中:最大元素为的集合有个;最大元素为的集合有;最大元素为的集合有;最大元素为的集合有;所以故选:【点睛】此题考查集合相关的新定义问题,其本质在于弄清计数原理,分类讨论,分别求解.8、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部
9、为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题9、B【解析】圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆【详解】因为点在抛物线上,又焦点,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种故选:【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上10、C【解析】由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 云南 中央民族大学 附属中学 高三二诊 模拟考试 数学试卷 解析
限制150内