2022-2023学年吉林省长春市九台市第四中学高三第二次联考数学试卷含解析.doc
《2022-2023学年吉林省长春市九台市第四中学高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省长春市九台市第四中学高三第二次联考数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A0,1,B0,1,2,则满足ACB的集合C的个数为()A4B3C2D12已知向量与的夹角为,则( )AB0C0或D3若x,y满足约束条件则z=的取值范围为( )AB,3C,2D,24已知函数满足:当时,且对任意,都有,则( )A0B1C-1
2、D5设复数满足(为虚数单位),则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限6已知全集,函数的定义域为,集合,则下列结论正确的是ABCD7设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重比为58.79kg8已知,则( )ABCD9在中,则 ( )ABCD10在
3、复平面内,复数(为虚数单位)对应的点位于( )A第一象限B第二象限C第三象限D第四象限11在中,内角的平分线交边于点,则的面积是( )ABCD12设集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,如果函数有三个零点,则实数的取值范围是_14如图,在三棱锥中,平面,已知,则当最大时,三棱锥的体积为_15的展开式中,的系数是_. (用数字填写答案)16已知复数(为虚数单位),则的共轭复数是_,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半
4、轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)写出直线的普通方程与曲线的直角坐标方程;(2)设直线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.18(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.19(12分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.20(12分)已知函数(1)若,证明:当时,;(2)若在只有一个零点,求的值.21(1
5、2分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.22(10分)已知,(1)求的最小正周期及单调递增区间;(2)已知锐角的内角,的对边分别为,且,求边上的高的最大值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只
6、有一项是符合题目要求的。1、A【解析】由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.2、B【解析】由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.3、D【解析】由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函
7、数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,所以.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.4、C【解析】由题意可知,代入函数表达式即可得解.【详解】由可知函数是周期为4的函数,.故选:C.【点睛】本题考查了分段函数和函数周期的应用,属于基础题.5、A【解析】由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐标为,位于第一象限.故选:.【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.6、A【解析】求函数定义域得集合M,N后,再判断【详解
8、】由题意,故选A【点睛】本题考查集合的运算,解题关键是确定集合中的元素确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定7、D【解析】根据y与x的线性回归方程为 y=0.85x85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D8、B【解析】利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由
9、于,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.9、A【解析】先根据得到为的重心,从而,故可得,利用可得,故可计算的值【详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A【点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心10、C【解析】化简复数为、的形式,可以确定对应的点位于的象限【详解】解:复数故复数对应的坐标为位于第三象限故选:【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题11、B【解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 吉林省 长春市 九台市 第四 中学 第二次 联考 数学试卷 解析
限制150内