2022-2023学年广东省、河南省名校高三第二次诊断性检测数学试卷含解析.doc
《2022-2023学年广东省、河南省名校高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省、河南省名校高三第二次诊断性检测数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1集合的子集的个数是( )A2B3C4D82已知命题p:“”是“”的充要条件;,则( )A为真命题B为真命题C为真命题D为假命题3下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位4空
2、间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离已知平面,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是( )AB3CD5已知复数满足,则的值为( )ABCD26已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )ABCD7的展开式中的系数为( )ABCD8阅读名著,品味人生,是中华民族的优良传统.学生李华计划在高一年级每周星期一至星期五的每天阅读半个小时中国四大名著:红楼梦、三国演义、水浒传及西游记,其中每天阅读一种,每种至少阅读一次,则每周不同的阅读计划
3、共有( )A120种B240种C480种D600种9为得到的图象,只需要将的图象( )A向左平移个单位 B向左平移个单位C向右平移个单位 D向右平移个单位10设,则,三数的大小关系是ABCD11设是定义域为的偶函数,且在单调递增,则( )ABCD12已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13给出下列等式:,请从中归纳出第个等式:_.14设,分别是定义在上的奇函数和偶函数,且,则_15已知等差数列的前项和为,且,则_.16已知函数为偶函数,则_.三、解答
4、题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)等差数列的前项和为,已知,.()求数列的通项公式及前项和为;()设为数列的前项的和,求证:.18(12分)在平面直角坐标系xOy中,曲线的参数方程为(为参数)以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为(1)求曲线的极坐标方程;(2)设和交点的交点为,求 的面积19(12分)已知函数.(1)设,若存在两个极值点,且,求证:;(2)设,在不单调,且恒成立,求的取值范围.(为自然对数的底数).20(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、成等比数列,.设数列的前项和为,且满足
5、.(1)求数列、的通项公式;(2)令,证明:.21(12分)已知椭圆的离心率为,点在椭圆上.()求椭圆的标准方程;()设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.22(10分)如图,在平面直角坐标系xOy中,已知椭圆C:(ab0)的离心率为且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方)(1)求椭圆C的标准方程;(2)若AEF与BDF的面积之比为1:7,求直线l的方程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先确定集合中元素的个数
6、,再得子集个数【详解】由题意,有三个元素,其子集有8个故选:D【点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个2、B【解析】由的单调性,可判断p是真命题;分类讨论打开绝对值,可得q是假命题,依次分析即得解【详解】由函数是R上的增函数,知命题p是真命题对于命题q,当,即时,;当,即时,由,得,无解,因此命题q是假命题所以为假命题,A错误;为真命题,B正确;为假命题,C错误;为真命题,D错误故选:B【点睛】本题考查了命题的逻辑连接词,考查了学生逻辑推理,分类讨论,数学运算的能力,属于中档题.3、D【解析】根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】
7、设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.4、D【解析】建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得到,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值设,则,化简得:,则,解得:,即点的轨迹上的点到的距离的最小值是.故选:.【点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨
8、迹方程,进而根据轨迹方程构造不等关系求得最值.5、C【解析】由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.6、D【解析】先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.7、C【解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 河南省 名校 第二次 诊断 检测 数学试卷 解析
限制150内