2022-2023学年天津市东丽区军粮城第二中学高考考前模拟数学试题含解析.doc
《2022-2023学年天津市东丽区军粮城第二中学高考考前模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年天津市东丽区军粮城第二中学高考考前模拟数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设命题函数在上递增,命题在中,下列为真命题的是( )ABCD2的展开式中的常数项为( )A60B240C80D1803运行如图所示的程序框图,若输出的值为300,则判断框中可以填(
2、 )ABCD4某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为( )ABCD5设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,则B若,,则C若,则D若,则6设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD7“是函数在区间内单调递增”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件8如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )A等于4B大于4C小于4D不确定9函数的图象大致为( )ABCD10若向量,
3、则与共线的向量可以是()ABCD11已知函数,不等式对恒成立,则的取值范围为( )ABCD12设,是空间两条不同的直线,是空间两个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的定义域为_.14在中,已知是的中点,且,点满足,则的取值范围是_.15已知函数在处的切线与直线平行,则为_.16已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比
4、中项(1)证明:数列是等差数列; (2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有18(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.19(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意一点,求的取值范围.20(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一
5、件产品,若使得至少有一件合格的概率不低于,求的最小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.21(12分)已知函数,.(1)若函数在上单调递减,且函数在上单
6、调递增,求实数的值;(2)求证:(,且).22(10分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】命题:函数在上单调递减,即可判断出真假命题:在中,利用余弦函数单调性判断出真假【详解】解:命题:函数,所以,当时,即函数在上单调递减,因此是假命题命题:在中,在上单调递减,所以,是真命题则下列命题为真命题的是故选:C【点睛】本题考查了函数的单调性、正弦定理、三角形边角大小关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题2、D【解析】求的
7、展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.3、B【解析】由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,故判断框中应填?故选:【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题4、C【解析】作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出
8、外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.5、C【解析】在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,则与相交或平行,故A错误;在B中,若,则
9、或,故B错误;在C中,若,则由线面垂直的判定定理得,故C正确;在D中,若,则与平行或,故D错误故选C【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题6、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.7、C【解析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 天津市 东丽区 军粮 第二 中学 高考 考前 模拟 数学试题 解析
限制150内