2022-2023学年内蒙古包头市示范名校高考仿真卷数学试题含解析.doc
《2022-2023学年内蒙古包头市示范名校高考仿真卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年内蒙古包头市示范名校高考仿真卷数学试题含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1记等差数列的公差为,前项和为.若,则( )ABCD2若复数满足,则( )ABC2D3给出下列四个命题:若“且”为假命题,则
2、均为假命题;三角形的内角是第一象限角或第二象限角;若命题,则命题,;设集合,则“”是“”的必要条件;其中正确命题的个数是( )ABCD4设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为( )ABC5D65已知函数若存在实数,且,使得,则实数a的取值范围为( )ABCD6在中,角的对边分别为,若,且,则的面积为( )ABCD7已知函数,若,则的取值范围是( )ABCD8已知函数.设,若对任意不相等的正数,恒有,则实数a的取值范围是( )ABCD9已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是( )ABCD10的展开式中的常数项为( )A60B
3、240C80D18011如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是()A2017年第一季度GDP增速由高到低排位第5的是浙江省B与去年同期相比,2017年第一季度的GDP总量实现了增长C2017年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个D去年同期河南省的GDP总量不超过4000亿元12数列满足:,为其前n项和,则( )A0B1C3D4二、填空题:本题共4小题,每小题5分,共20分。13在中,则_14在一底面半径和高都是的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中现从中随机取出的种子,则取出了带麦锈病种子的概率是_15设满足约束条件,则目标函数的
4、最小值为_.16如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上若是等边三角形,且满足,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;
5、()为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)18(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.()求椭圆的方程;()设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.19(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,且,求BD的长度.20(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得
6、极大值,求的取值范围.21(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.22(10分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,和,可求得,从而求得和,再验证选项.【详解】因为,所以解得,所以,所以,故选:C.【点睛】本题考查等差数列的
7、通项公式、前项和公式,还考查运算求解能力,属于中档题.2、D【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.3、B【解析】利用真假表来判断,考虑内角为,利用特称命题的否定是全称命题判断,利用集合间的包含关系判断.【详解】若“且”为假命题,则中至少有一个是假命题,故错误;当内角为时,不是象限角,故错误;由特称命题的否定是全称命题知正确;因为,所以,所以“”是“”的必要条件,故正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等
8、知识,是一道基础题.4、A【解析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.5、D【解析】首先对函数求导,利用导数的符号分析函
9、数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2)(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.6、C【解析】由,可得,化简利用余弦定理可得,解得即可得出三角形面积【详解】解:,且,化为:,解得故选:【点睛】本题考查了向量共线定理、余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题7、B【解析】对分类讨论,代入解析式求出,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 内蒙古 包头市 示范 名校 高考 仿真 数学试题 解析
限制150内