2022-2023学年内蒙古包钢第一中学高三第四次模拟考试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年内蒙古包钢第一中学高三第四次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年内蒙古包钢第一中学高三第四次模拟考试数学试卷含解析.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,平面与平面相交于,点,点,则下列叙述错误的是( )A直线与异面B过只有唯一平面与平行C过点只能作唯一平面与垂直D过一定能作一平面与垂直2在区间上随机取一个数,使直线与圆相交的概率为( )ABCD3已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD4已知函数,则函数的零点所在区间为( )ABCD5如图,正方体的底面与正四面体的底面在同一平面上,且,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()ABCD6设(是虚数
3、单位),则( )AB1C2D7已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()8空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离已知平面,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是( )AB3CD9存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( )ABCD10已知函数,若所有点,所构成的平面区域面积为,则( )ABC1D11已知四棱锥,底面ABCD是边长为1的正方形,
4、平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为( )ABCD112抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在中,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为_14设全集,则_.15的展开式中二项式系数最大的项的系数为_(用数字作答).16在平面直角坐标系中,已知,若圆上有且仅有四个不同的点C,使得ABC的面积为5,则实数a的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程
5、或演算步骤。17(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.18(12分)设函数f(x)=x24xsinx4cosx (1)讨论函数f(x)在,上的单调性;(2)证明:函数f(x)在R上有且仅有两个零点19(12分)如图,在三棱锥中,平面平面,.点,分别为线段,的中点,点是线段的中点.(1)求证:平面.(2)判断与平面的位置关系,并证明.20(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,求的取值范围.21(12分)设函
6、数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.22(10分)已知函数,(1)若,求实数的值(2)若,求正实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂
7、直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.2、C【解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得 所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.3、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称
8、,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.4、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想
9、方法,属于中档题.5、A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.6、A【解析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【详解】,故选:A【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题7、B【解析】如图所示:连接,根据垂直
10、平分线知,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.8、D【解析】建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得到,进而得到所求最小值.【详解】如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值设,则,化简得:,则,解得:,即点的轨迹上的点到的距离的最小值是.故选:.【点睛】本题考查立体几何中点面距离最值的求解,关键是能够
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 内蒙古 包钢 第一 中学 第四 模拟考试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内