2022-2023学年上海市长宁区、青浦区、宝山区、嘉定区高考数学考前最后一卷预测卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年上海市长宁区、青浦区、宝山区、嘉定区高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年上海市长宁区、青浦区、宝山区、嘉定区高考数学考前最后一卷预测卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1关于函数有下述四个结论:( )是偶函数; 在区间上是单调递增函数;在上的最大值为2; 在区间上有4个零点.其中所有正确结论的编号是( )ABCD2正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD3函数的大致图
2、象为( )ABCD4在三棱锥中,则三棱锥外接球的表面积是( )ABCD5已知且,函数,若,则( )A2BCD6已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD7设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为( )ABCD8如图,矩形ABCD中,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:对满足题意的任意的的位置,;对满足题意的任意的的位置,则( ) A命题和命题都成立B命题和命题都不成立C命题成立
3、,命题不成立D命题不成立,命题成立9已知三点A(1,0),B(0, ),C(2,),则ABC外接圆的圆心到原点的距离为()ABCD10已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()ABCD11已知不等式组表示的平面区域的面积为9,若点, 则的最大值为( )A3B6C9D1212设复数满足,则( )A1B-1CD二、填空题:本题共4小题,每小题5分,共20分。13能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是_.14在中,则绕所在直线旋转一周所形成的几何体的表面积为_.15有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概
4、率为_.16观察下列式子,根据上述规律,第个不等式应该为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,D是在ABC边AC上的一点,BCD面积是ABD面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长18(12分)如图,在四棱锥中,底面为直角梯形,平面底面,为的中点,是棱上的点且,.求证:平面平面以;求二面角的大小.19(12分)在直角坐标平面中,已知的顶点,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.20(12分)分别为的内角的对
5、边.已知.(1)若,求;(2)已知,当的面积取得最大值时,求的周长.21(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值22(10分)已知公差不为零的等差数列的前n项和为,是与的等比中项.(1)求;(2)设数列满足,求数列的通项公式.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据函数的奇偶性、单调性、最值和零点对四个结论逐一
6、分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故正确.由于,所以在区间上不是单调递增函数,所以错误.当时,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以错误.依题意,当时,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以正确.综上所述,正确的结论序号为.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.2、C【解析】分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线
7、为轴的平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.3、A【解析】利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,.故选:A【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.4、B【解析】取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,则,则,由勾股定理的逆定理,得.设球心为
8、,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.5、C【解析】根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,则,则.即.故选:C.【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.6、A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 上海市 长宁区 青浦区 宝山区 嘉定区 高考 数学 考前 最后 一卷 预测 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-87795792.html
限制150内