2022-2023学年广西贺州市桂梧高级中学高考仿真模拟数学试卷含解析.doc
《2022-2023学年广西贺州市桂梧高级中学高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西贺州市桂梧高级中学高考仿真模拟数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1已知向量,设函数,则下列关于函数的性质的描述正确的是A关于直线对称B关于点对称C周期为D在上是增函数2已知函数f(x),若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是()A B C D 3复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限4若函数满足,且,则的最小值是( )ABCD5某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( )ABC1D6宁波古圣王阳明的传习录专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线
3、,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )ABCD7设是虚数单位,则( )ABC1D28在复平面内,复数(为虚数单位)对应的点位于( )A第一象限B第二象限C第三象限D第四象限9已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )A2或B3或C4或D5或10一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为( )ABCD11已知全集为,集合,则( )ABCD12已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是( )A()B()C()D()二、填
4、空题:本题共4小题,每小题5分,共20分。13某市公租房源位于、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是_ .(用数字作答)14实数满足,则的最大值为_15已知实数,满足约束条件,则的最小值为_.16已知,满足,则的展开式中的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.18(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.19(12分)已知.()当时,解不等式
5、;()若的最小值为1,求的最小值.20(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:求乙公司送餐员日工资的分布列和数学期望;小张打算到甲、乙两家公司中的
6、一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.21(12分)试求曲线ysinx在矩阵MN变换下的函数解析式,其中M,N22(10分)已知椭圆:(),四点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】当时,f(x)不关于直线对称;当时, ,f(x)关于点对称;f(x)得周期,当时, ,f(x)在上是增函数本题选择D选项.2、D【解析】由已知可将问题转化为:yf(x)的图象和直线
7、ykx有4个交点,作出图象,由图可得:点(1,0)必须在直线ykx的下方,即可求得:k;再求得直线ykx和yln x相切时,k;结合图象即可得解.【详解】若关于x的方程f(x)kx恰有4个不相等的实数根,则yf(x)的图象和直线ykx有4个交点作出函数yf(x)的图象,如图,故点(1,0)在直线ykx的下方k10,解得k.当直线ykx和yln x相切时,设切点横坐标为m,则k,m.此时,k,f(x)的图象和直线ykx有3个交点,不满足条件,故所求k的取值范围是,故选D.【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题3、B【解析】设,则,可得
8、,即可得到,进而找到对应的点所在象限.【详解】设,则,所以复数在复平面内所对应的点为,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复数的模,考查运算能力.4、A【解析】由推导出,且,将所求代数式变形为,利用基本不等式求得的取值范围,再利用函数的单调性可得出其最小值.【详解】函数满足,即,即,则,由基本不等式得,当且仅当时,等号成立.,由于函数在区间上为增函数,所以,当时,取得最小值.故选:A.【点睛】本题考查代数式最值的计算,涉及对数运算性质、基本不等式以及函数单调性的应用,考查计算能力,属于中等题.5、B【解析】首先由三视图还原几何体,进一步求出几何体的棱长【详解
9、】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为故选:B【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题6、B【解析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.7、C【解析】由,可得,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广西 贺州市 高级中学 高考 仿真 模拟 数学试卷 解析
限制150内