2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc
《2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省华南师范大附属中学中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;在这样连续6次旋转的过程中,
2、点B,O间的距离不可能是()A0B0.8C2.5D3.42如图,已知在ABC,ABAC若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()AAEECBAEBECEBCBACDEBCABE3如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在O上,若过点M作O的一条切线MK,切点为K,则MK()A3B2C5D4若分式的值为零,则x的值是( )A1BCD25下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2pap=a3p6二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=
3、在同一平面直角坐标系中的图象可能是()ABCD7已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da308如图,二次函数y=ax2+bx+c(a0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC有下列结论:abc0;3b+4c0;c1;关于x的方程ax2+bx+c=0有一个根为,其中正确的结论个数是()A1B2C3D49如图,A,B是半径为1的O上两点,且OAOB点P从A出发,在O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是ABC或D或10函数
4、的自变量x的取值范围是( )Ax1Bx0时,y的值随x的增大而越来越接近-1当x时,y的取值范围是y1以上结论正确的是_(填序号)16若点A(3,4)、B(2,m)在同一个反比例函数的图象上,则m的值为 17因式分解:_三、解答题(共7小题,满分69分)18(10分)如图,在RtABC中,ACB90,CD 是斜边AB上的高(1)ACD与ABC相似吗?为什么?(2)AC2ABAD 成立吗?为什么?19(5分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目
5、所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.20(8分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30方向8km处,位于景点B的正北方向,还位于景点C的北偏西75方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长(结果精确到0.1km)求景点C与景点D之间的距离(结果精确到1km)21(10分)先化简,再求值:,其中,a
6、、b满足22(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图中的条形图补充完整;学习时间在22.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?23(12分)如图,ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A
7、1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆时针旋转90后得到的A1B1C124(14分)在如图的正方形网格中,每一个小正方形的边长均为 1格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(2,0),(3,3)(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把ABC 绕坐标原点 O 顺时针旋转 90得到A1B1C1,画出A1B1C1,写出点B1的坐标;(3)以坐标原点 O 为位似中心,相似比为 2,把A1B1C1 放大为原来的 2 倍,得到A2B2C2 画出A2B2C2,使它与AB1C1 在位似中心的同侧;请在 x 轴上求作一点 P
8、,使PBB1 的周长最小,并写出点 P 的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0d,即0d3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CHBD于点H,六边形ABCDE是正六边形,BCD=120,CBH=30,BH=cos30 BC=,BD=.DK=,BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,0d,即0d3.1,故点B,O间的距离不可能是3.4,故选:D【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O
9、的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键2、C【解析】解:AB=AC,ABC=ACB以点B为圆心,BC长为半径画弧,交腰AC于点E,BE=BC,ACB=BEC,BEC=ABC=ACB,BAC=EBC故选C点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大3、B【解析】以OM为直径作圆交O于K,利用圆周角定理得到MKO90从而得到KMOK,进而利用勾股定理求解【详解】如图所示:MK.故选:B【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系4、A【解析】试题解析:分式的值为零
10、,|x|1=0,x+10,解得:x=1故选A5、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故此选项错误;Da2pap=a3p,正确故选D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键6、C【解析】试题分析:二次函数图象开口方向向下,a0,对称轴为直线0,b0,与y轴的正半轴相交,c0,的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合故选C考点:1二次函数的图象;2一次
11、函数的图象;3反比例函数的图象7、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【解析】由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断;由对称轴=2可知a=,由图象可知当x=1时,y0,可判断;由OA=OC,且OA1,可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 华南 师范 附属中学 中考 数学 适应性 模拟 试题 解析
限制150内