2022-2023学年云南省昆明市云南民族大学附属中学高三第六次模拟考试数学试卷含解析.doc
《2022-2023学年云南省昆明市云南民族大学附属中学高三第六次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省昆明市云南民族大学附属中学高三第六次模拟考试数学试卷含解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在区间上随机取一个数,使直线与圆相交的概率为( )ABCD2设集合、是全集的两个子集,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3一个圆锥的底面和一
2、个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD4若向量,则( )A30B31C32D335已知实数,则下列说法正确的是( )ABCD6已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为( )AB3C2D7设全集,集合,则( )ABCD8中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排
3、六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2409若,则下列不等式不能成立的是( )ABCD10等腰直角三角形BCD与等边三角形ABD中,现将沿BD折起,则当直线AD与平面BCD所成角为时,直线AC与平面ABD所成角的正弦值为( ) ABCD11若,则的值为( )ABCD12如图,在正方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的
4、仰角以及;从点测得已知山高,则山高_14函数在的零点个数为_15已知点是双曲线渐近线上的一点,则双曲线的离心率为_16若x,y均为正数,且,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的
5、奖金数额,求随机变量X的分布列和数学期望.18(12分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小19(12分)设数列是公差不为零的等差数列,其前项和为,若,成等比数列(1)求及;(2)设,设数列的前项和,证明:20(12分)已知an是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1(I)求an的通项公式;()若数列bn满足:,求bn的前n项和21(12分)已知数列的通项,数列为等比数列,且,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.22(10分)已知 (1)当时,判断函数的极值点的个数;(2)记,若存在
6、实数,使直线与函数的图象交于不同的两点,求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得 所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.2、C【解析】作出韦恩图,数形结合,即可得出结论.【详解】如图所示,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.3、D【解析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球
7、的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.4、C【解析】先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.5、C【解析】利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数, ,不成立对于不成立对于利用对数函数单调递增性质,即可得出对于指数函数单调递减性质,因此不成立 故选:【点睛】利用不等式性质比较大小要注意不等式性质
8、成立的前提条件解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法6、D【解析】本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可【详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,代入上式子中,得到,结合离心率满足,即可得出,故选D【点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难7、D【解析】求解不等式,得到集合A,B,利用交集、补集运算即得解【详解】由于 故集合或 故集合 故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 云南省 昆明市 云南 民族大学 附属中学 第六 模拟考试 数学试卷 解析
限制150内