2022-2023学年广东汕头市高三第二次联考数学试卷含解析.doc
《2022-2023学年广东汕头市高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东汕头市高三第二次联考数学试卷含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1抛物线的焦点为,点是上一点,则( )ABCD2设是虚数单位,复数()ABCD3设函数(,为自然对数的底
2、数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD4设集合,则 ()ABCD5已知向量,则向量在向量方向上的投影为( )ABCD6设,则的值为( )ABCD7已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B8等比数列若则( )A6B6C-6D9已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D810若,则下列结论正确的是( )ABCD11若非零实数、满足,则下列式子一定正确的是( )ABCD12已知向量与向量平行,且,则( )ABCD二、填空题:本题共4小题,每
3、小题5分,共20分。13已知数列满足,若,则数列的前n项和_14若展开式的二项式系数之和为64,则展开式各项系数和为_15如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上若是等边三角形,且满足,则的最小值为_.16已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设数列,其前项和,又单调递增的等比数列, , .()求数列,的通项公式;()若 ,求数列的前n项和,并求证:.18(12分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶
4、证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目
5、二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.19(12分)已知函数,其中()当时,求函数的单调区间;()设,求证:;()若对于恒成立,求的最大值20(12分)已知数列的各项都为正数,且()求数列的通项公式;()设,其中表示不超过x的最大整数,如,求数列 的前2020
6、项和21(12分)设函数.()讨论函数的单调性;()如果对所有的0,都有,求的最小值;()已知数列中,且,若数列的前n项和为,求证:.22(10分)已知的三个内角所对的边分别为,向量,且.(1)求角的大小;(2)若,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.2、D【解析】利用复数的除法运算,化简复数,即可求解,得到答案【详解】由题意,复数,故选D【点睛】本题主要考查了复数的除法运算,其中解答
7、中熟记复数的除法运算法则是解答的关键,着重考查了运算与求解能力,属于基础题3、D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.4、B【解析】直接进行集合的并集、交集的运算即可【详解】解:; 故选:B【点睛】本题主要考查
8、集合描述法、列举法的定义,以及交集、并集的运算,是基础题.5、A【解析】投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.6、D【解析】利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.7、C【解析】试题分析:集合 考点:集合间的关系8、B【解析
9、】根据等比中项性质代入可得解,由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.9、B【解析】取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.10、D【解析】根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东 汕头市 第二次 联考 数学试卷 解析
限制150内