《2022-2023学年山西省太原市中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山西省太原市中考数学全真模拟试题含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )ABCD2下列各数中,最小的数是( )A4 B3 C0 D23如图,在ABCD中,DAB的平分线交CD于点E,交BC的延长线于点G,ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误
2、的是()ABO=OH BDF=CE CDH=CG DAB=AE4已知方程的两个解分别为、,则的值为()ABC7D35下列运算正确的是()ABCa2a3=a5D(2a)3=2a36“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根72017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A5.46108B5.46109C5.461010D5.4610118如图,
3、点D(0,3),O(0,0),C(4,0)在A上,BD是A的一条弦,则cosOBD()ABCD9下列说法中正确的是( )A检测一批灯泡的使用寿命适宜用普查.B抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.C“367人中有两人是同月同日生”为必然事件.D“多边形内角和与外角和相等”是不可能事件.10如图,AB是O的直径,AB8,弦CD垂直平分OB,E是弧AD上的动点,AFCE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为()A4+3B4+C+D+3二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系xOy中,四边形OABC是正方
4、形,点C(0,4),D是OA中点,将CDO以C为旋转中心逆时针旋转90后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_12在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是_13若与是同类项,则的立方根是 14已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=_15已知实数m,n满足,且,则= 16计算:的结果是_17如图,O的直径AB=8,C为的中点,P为O上一动点,连接AP、CP,过C作CDCP交AP于点D,点P从B运动到C时,则点
5、D运动的路径长为_三、解答题(共7小题,满分69分)18(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.19(5分)如图,矩形ABCD绕点C顺时针旋转90后得到矩形CEFG,连接DG交EF于H,连接AF交D
6、G于M;(1)求证:AM=FM;(2)若AMD=a求证:=cos20(8分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点求的值;横、纵坐标都是整数的点叫做整点记图象在点,之间的部分与线段,围成的区域(不含边界)为当时,直接写出区域内的整点个数;若区域内恰有4个整点,结合函数图象,求的取值范围21(10分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120(1)求这条抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求
7、点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0120),连接EA、EB,求EA+EB的最小值22(10分)已知AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F,切点为G,连接AG交CD于K(1)如图1,求证:KEGE;(2)如图2,连接CABG,若FGBACH,求证:CAFE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE,AK,求CN的长23(12分)我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示根据
8、图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定24(14分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角ABC为14,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因(参考数据:sin14=0.24,cos14=0.97,tan14=0.25)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析:左视图如图所示:故选C.2、A【解析】有理数大小
9、比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得4203各数中,最小的数是4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小3、D【解析】解:四边形ABCD是平行四边形,AHBG,AD=BC,H=HBGHBG=HBA,H=HBA,AH=AB同理可证BG=AB,AH=BGAD=BC,DH=CG,故C正确AH=AB,OAH=OAB,OH=OB,故A正确DFAB,DFH=ABHH=ABH,H=DFH,DF=DH同理可
10、证EC=CGDH=CG,DF=CE,故B正确无法证明AE=AB,故选D4、D【解析】由根与系数的关系得出x1x25,x1x22,将其代入x1x2x1x2中即可得出结论【详解】解:方程x25x20的两个解分别为x1,x2,x1x25,x1x22,x1x2x1x2521故选D【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1x25,x1x22本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键5、C【解析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断【详解】解:A、=2,此选项错误;B、不能
11、进一步计算,此选项错误;C、a2a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则6、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少
12、位,n的绝对值与小数点移动的位数相同【详解】解:将546亿用科学记数法表示为:5.461010 ,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.8、C【解析】根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.【详解】D(0,3),C(4,0),OD3,OC4,COD90,CD 5,连接CD,如图所示:OBDOCD,cosOBDcosOCD 故选:C【点睛】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.9、C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A. 检测一批灯泡
13、的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.10、A【解析】连AC,OC,BC线段CF扫过的面积扇形MAH的面积+MCH的面积,从而证明即可解决问题【详解】如下图,连AC,OC,BC,设
14、CD交AB于H,CD垂直平分线段OB,COCB,OCOB,OCOBBC,AB是直径,点F在以AC为直径的M上运动,当E从A运动到D时,点F从A运动到H,连接MH,MAMH,CF扫过的面积为,故选:A【点睛】本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、(4,2)【解析】利用图象旋转和平移可以得到结果.【详解】解:CDO绕点C逆时针旋转90,得到CBD,则BD=OD=2,点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到OAD,点D向下平移4个单位故点D坐标为(4,2),故答案为
15、(4,2)【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.12、【解析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.【详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:,故答案为.【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.13、2【解析】试题分析:若与是同类项,则:,解方程
16、得:=23(2)=8.8的立方根是2故答案为2考点:2立方根;2合并同类项;3解二元一次方程组;4综合题14、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可【详解】关于x的一元二次方程mx1+5x+m11m=0有一个根为0,m11m=0且m0,解得,m=1,故答案是:1【点睛】本题考查了一元二次方程ax1+bx+c=0(a0)的解的定义解答该题时需注意二次项系数a0这一条件15、【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解试题解析:时,则m,n是方程3x26x5=0的两个不相等的根,原式
17、=,故答案为考点:根与系数的关系16、【解析】试题分析:先进行二次根式的化简,然后合并同类二次根式即可,考点:二次根式的加减17、 【解析】分析:以AC为斜边作等腰直角三角形ACQ,则AQC=90,依据ADC=135,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据ACQ中,AQ=4,即可得到点D运动的路径长为=2详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则AQC=90O的直径为AB,C为的中点,APC=45又CDCP,DCP=90,PDC=45,ADC=135,点D的运动轨迹为以Q为圆心,AQ为半径的又AB=8,C为的中点,AC=4,ACQ中,AQ=4,点D运动的路径长为=2 故
18、答案为2 点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键三、解答题(共7小题,满分69分)18、(1):,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:,共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,在规划1中,(小黄赢);红心牌点数是黑桃牌点数的整倍数有4种可能,在规划2中,(小黄赢).,小黄要在游戏中获胜,小黄会选择规则1
19、.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.19、(1)见解析;(2)见解析.【解析】(1)由旋转性质可知:AD=FG,DC=CG,可得CGD=45,可求FGH=FHG=45,则HF=FG=AD,所以可证ADMMHF,结论可得(2)作FNDG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cos=cosFMG=,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且DCG=90,DGC=45从而DGF=45,EFG=90,HF=FG=AD又由旋转可知,ADEF,DAM=HFM,又DMA
20、=HMF,ADMFHMAM=FM(2)作FNDG垂足为NADMMFHDM=MH,AM=MF=AFFH=FG,FNHGHN=NGDG=DM+HM+HN+NG=2(MH+HN)MN=DGcosFMG=cosAMD=cos【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形20、(1)4;(2)3个(1,0),(2,0),(3,0)或【解析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)当时,根据整点的概念,直接写出区域内的整点个数即可.分当直线过(4,0)时,当直线过(5,0)时,当直线过(1,2)时,当直线过(1,3)时四种情况进行讨论即可.
21、详解:(1)解:点(4,1)在()的图象上,(2) 3个(1,0),(2,0),(3,0) 当直线过(4,0)时:,解得当直线过(5,0)时:,解得当直线过(1,2)时:,解得当直线过(1,3)时:,解得综上所述:或点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.21、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30,由OA=2OE,OC=
22、,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,AO=OB=2,AOB=120,AOH=60,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30,POC=90+30=120,AOE=120,AOE=POC=120,OA=2OE,OC=,当OP=OC或
23、OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题22、(1)证明见解析;(2)EAD是等腰三角形证明见解析;(3). 【解析】试题分析:(1)连接OG,则由已知易得OGE=AHK=90,由OG=OA可得AGO=OAG,
24、从而可得KGE=AKH=EKG,这样即可得到KE=GE;(2)设FGB=,由AB是直径可得AGB=90,从而可得KGE=90-,结合GE=KE可得EKG=90-,这样在GKE中可得E=2,由FGB=ACH可得ACH=2,这样可得E=ACH,由此即可得到CAEF;(3)如下图2,作NPAC于P,由(2)可知ACH=E,由此可得sinE=sinACH=,设AH=3a,可得AC=5a,CH=4a,则tanCAH=,由(2)中结论易得CAK=EGK=EKG=AKC,从而可得CK=AC=5a,由此可得HK=a,tanAKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由BHK=BK
25、G=90,可得ABG+HKG=180,结合AKH+GKG=180,ACG=ABG可得ACG=AKH,在RtAPN中,由tanCAH=,可设PN=12b,AP=9b,由tanACG=tanAKH=3可得CP=4b,由此可得AC=AP+CP=5,则可得b=,由此即可在RtCPN中由勾股定理解出CN的长.试题解析:(1)如图1,连接OGEF切O于G,OGEF,AGO+AGE=90,CDAB于H,AHD=90,OAG=AKH=90,OA=OG,AGO=OAG,AGE=AKH,EKG=AKH,EKG=AGE,KE=GE(2)设FGB=,AB是直径,AGB=90,AGE=EKG=90,E=180AGEEK
26、G=2,FGB=ACH,ACH=2,ACH=E,CAFE(3)作NPAC于PACH=E,sinE=sinACH=,设AH=3a,AC=5a,则CH=,tanCAH=,CAFE,CAK=AGE,AGE=AKH,CAK=AKH,AC=CK=5a,HK=CKCH=4a,tanAKH=3,AK=,AK=,a=1AC=5,BHD=AGB=90,BHD+AGB=180,在四边形BGKH中,BHD+HKG+AGB+ABG=360,ABG+HKG=180,AKH+HKG=180,AKH=ABG,ACN=ABG,AKH=ACN,tanAKH=tanACN=3,NPAC于P,APN=CPN=90,在RtAPN中,
27、tanCAH=,设PN=12b,则AP=9b,在RtCPN中,tanACN=3,CP=4b,AC=AP+CP=13b,AC=5,13b=5,b=,CN=23、(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些两个队的平均数都相同,初中部的中位数高,在平均数相同的情况下中位数高的初中部成绩好些(3),因此,初中代表队选手成绩较为稳定(1)根据成绩表加以计算可补全统计表根据平均数、众数、中位数的统计意义回答(2)根据平均数和中位数的统计意义分析得出即可(3)分别求出初中、高中部的方差比较即可24、客车不能通过限高杆,理由见解析【解析】根据DEBC,DFAB,得到EDF=ABC=14在RtEDF中,根据cosEDF=,求出DF的值,即可判断.【详解】DEBC,DFAB,EDF=ABC=14在RtEDF中,DFE=90,cosEDF=,DF=DEcosEDF=2.55cos142.550.972.1限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,客车不能通过限高杆【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.
限制150内