《2022-2023学年四川省南充高级中学中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省南充高级中学中考数学全真模拟试卷含解析.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD2汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t5t2,汽车刹车后停下来前进的距离是()A10m B20m C
2、30m D40m3如图,四边形ABCD内接于O,若四边形ABCO是平行四边形,则ADC的大小为( )ABCD4如图是一个空心圆柱体,其俯视图是( )A B C D5关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2x1x21,则k的取值范围在数轴上表示为( )ABCD6如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO2,OB1,BC2,则下列结论正确的是( )ABCD7不等式2x11的解集在数轴上表示正确的是()ABCD8若抛物线yx2(m3)xm能与x轴交,则两交点间的距离最值是( )A最大值2,B最小值2C最大值2D最小值29如图所示,的顶点是
3、正方形网格的格点,则的值为()ABCD10下列说法正确的是( )A“明天降雨的概率是60%”表示明天有60%的时间都在降雨B“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60,则k的值为_12如图,每个小正方形的边长为1,A、B、C是小正方形的
4、顶点,则ABC的正弦值为_13从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_14化简:_15若y=,则x+y= 16如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有_个,第n幅图中共有_个三、解答题(共8题,共72分)17(8分)先化简:,再请你选择一个合适的数作为x的值代入求值18(8分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千
5、米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时? 19(8分)计算:+821(+1)0+2sin6020(8分)如图,在ABC中,BC40,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止求证:ABEACD;若ABBE,求DAE的度数;拓展:若ABD的外心在其内部时,求BDA的取值范围21(8分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81
6、.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?22(10分)先化简,再求值:,其中a为不等式组的整数解23(12分)先化简再求值:(a),其中a=1+,b=124有这样一个问题:探究函数y2x的图象与性质小东根据学习函数的经验,对函数y2x的图象与性质进行了探究下面是小东的探究过程
7、,请补充完整:(1)函数y2x的自变量x的取值范围是_;(2)如表是y与x的几组对应值x43.532101233.54y 0m则m的值为_;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质_参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B2、B【解析】利用配方法求二次函数最值的方法解答即可【详解】s=20t-5
8、t2=-5(t-2)2+20,汽车刹车后到停下来前进了20m故选B【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键3、C【解析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知B=AOC,根据圆内接四边形的对角互补可知B+D=180,根据圆周角定理可知D=AOC,因此B+D=AOC+AOC=180,解得AOC=120,因此ADC=60故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用4、D【解析】根据从上边看得到的图形是俯视图,可得答案【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D【点睛】本题考查了三视图
9、,明确俯视图是从物体上方看得到的图形是解题的关键.5、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集解:关于x的一元二次方程x2+2x+k+1=0有两个实根,0,44(k+1)0,解得k0,x1+x2=2,x1x2=k+1,2(k+1)1,解得k2,不等式组的解集为2k0,在数轴上表示为:,故选D点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键6、C【解析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:AO2,OB1,BC2,a2,b1,c3,|a|c|,ab0,故选:C【点睛】此题考查有理数的
10、大小比较以及绝对值,解题的关键结合数轴求解.7、D【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】移项得,2x1+1,合并同类项得,2x2,x的系数化为1得,x1在数轴上表示为:故选D【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键8、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2=m-3,x1x2=-m,则两交点间的距离d=|x1-x2|= ,m=1时,dmin=2故选D.9、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为
11、,BD=CD=,DBC=DCB=45,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形10、D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点
12、数为2”这一事件发生的概率稳定在附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90,OAC+AOC=90,AOC+BOD=90,OAC=BOD,ACOODB,OAB=60,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.12、【解析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明BCA=90,然后得到ABC的度数,再利用特殊角的三角函数可得ABC的正
13、弦值【详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,AC=CB,BC2+AC2=AB2,BCA=90,ABC=45,ABC的正弦值为故答案为:【点睛】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数13、.【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.14、【解析】根据平面向量的加法法则计算即可【详解】.故答案为:【点睛
14、】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则15、1.【解析】试题解析:原二次根式有意义,x-30,3-x0,x=3,y=4,x+y=1考点:二次根式有意义的条件16、7 2n1 【解析】根据题意分析可得:第1幅图中有1个,第2幅图中有22-1=3个,第3幅图中有23-1=5个,可以发现,每个图形都比前一个图形多2个,继而即可得出答案【详解】解:根据题意分析可得:第1幅图中有1个第2幅图中有22-1=3个第3幅图中有23-1=5个第4幅图中有24-1=7个可以发现,每个图形都比前一个图形多2个故第n幅图中共有(
15、2n-1)个故答案为7;2n-1点睛:考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律三、解答题(共8题,共72分)17、x1,1【解析】先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可【详解】解:原式x1,根据分式的意义可知,x0,且x1,当x2时,原式211【点睛】本题主要考查分式的化简求值,化简过程中要注意运算顺序,化简结果是最简形式,难点在于当未知数的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为零18、(1)y1=4x,y2=-5x+1(2)km(3)h【解析】
16、(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=.当x=时,y2=5+1=,相遇时乙班离A地为km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=h.甲、乙两班首次相距4千米时所用时间是h.19、6+【解析】利用
17、负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算【详解】解:原式=+81+2=3+41+=6+【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍20、(1)证明见解析;(2);拓展:【解析】(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明ABEACD即可;(2)由等腰三角形的性质和三角形内角和定理求出BEA=EAB=70,证出AC=CD,由等腰三角形的性质得出ADC=DAC=70,即可得出DAE的度数;拓展
18、:对ABD的外心位置进行推理,即可得出结论【详解】(1)证明:点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,BD=CE,BC-BD=BC-CE,即BE=CD,B=C=40,AB=AC,在ABE和ACD中,ABEACD(SAS);(2)解:B=C=40,AB=BE,BEA=EAB=(180-40)=70,BE=CD,AB=AC,AC=CD,ADC=DAC=(180-40)=70,DAE=180-ADC-BEA=180-70-70=40;拓展:解:若ABD的外心在其内部时,则ABD是锐角三角形BAD=140-BDA90BDA50,又BDA90,50BDA90【点睛】本题考查了全等三角
19、形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键21、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套 【解析】(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元
20、一次不等式,解之取其中最大的整数即可得出结论【详解】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:解得:答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(20m)+1.2(30+1.5m)18,解得:m,m为整数,m1答:A种品牌的教学设备购进数量至多减少1套【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不
21、等式22、,1【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可【详解】解:原式,不等式组的解为a5,其整数解是2,3,4,a不能等于0,2,4,a3,当a3时,原式1【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键23、原式=【解析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】原式=,当a=1+,b=1时,原式=.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.24、(1)任意实数;(2);(3)见解析;(4)当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【解析】(1)没有限定要求,所以x为任意实数,(2)把x3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y2x的自变量x的取值范围是任意实数;故答案为任意实数;(2)把x3代入y2x得,y;故答案为;(3)如图所示;(4)根据图象得,当x2时,y随x的增大而增大;当x2时,y随x的增大而增大故答案为当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.
限制150内