2022-2023学年广东省“四校”高三第二次模拟考试数学试卷含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022-2023学年广东省“四校”高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省“四校”高三第二次模拟考试数学试卷含解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知数列满足,则( )ABCD2关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD3二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3604若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是( )ABCD
3、5若函数在处有极值,则在区间上的最大值为( )AB2C1D36已知角的终边经过点,则的值是A1或B或C1或D或7若ab0,0c1,则AlogaclogbcBlogcalogcbCacbc Dcacb8已知集合,则的真子集个数为( )A1个B2个C3个D4个9一辆邮车从地往地运送邮件,沿途共有地,依次记为,(为地,为地)从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,各地装卸完毕后剩余的邮件数记为则的表达式为( )ABCD10已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD
4、11已知函数,若,使得,则实数的取值范围是( )ABCD12在中,则边上的高为( )AB2CD二、填空题:本题共4小题,每小题5分,共20分。13设数列为等差数列,其前项和为,已知,若对任意都有成立,则的值为_14角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 15已知函数,若函数恰有4个零点,则实数的取值范围是_16若函数的图像与直线的三个相邻交点的横坐标分别是,则实数的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.18(12分)已知椭圆的离心率为,且以原点O为圆心
5、,椭圆C的长半轴长为半径的圆与直线相切(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值19(12分)已知是递增的等比数列,且、成等差数列.()求数列的通项公式;()设,求数列的前项和.20(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.21(12分)已知,证明:(1);(2).22(10分)已知函数(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用的前项和求出数
6、列的通项公式,可计算出,然后利用裂项法可求出的值.【详解】.当时,;当时,由,可得,两式相减,可得,故,因为也适合上式,所以.依题意,故.故选:C.【点睛】本题考查利用求,同时也考查了裂项求和法,考查计算能力,属于中等题.2、D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线
7、性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.3、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.4、B【解析】求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令, 则,令,则问题即在上有零点,由
8、于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.5、B【解析】根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题6、B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或
9、故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可7、B【解析】试题分析:对于选项A,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 广东省 第二次 模拟考试 数学试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内